Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Water contamination that caused by heavy metals is a very common phenomenon in the industrial age. One of the popular way to treat metal contaminated water is by adsorption process using activated carbon as the adsorbent. This paper works on producing activated carbon by chemical means with impregnation ratios of NaOH:char (w/w) was predetermined at 1:1 (ACT1-1), 2:1 (ACT2-1) and 3:1 (ACT3-1) under activation temperature of 700°C. Considering the Leucaena leucocephala is a wildly, easy and fast grown species, with the availability throught the year, it was chosen to be used as the precursor. The properties of these activated carbons and its potential for cadmium removal from aqueus solution was analyzed. It was found that the highest surface area was recorded at 662.76 m²/g. Four parameters were studied which are contact time, the effect of pH, initial concentration of adsorbate and temperature. The equilibrium time was achieved in 40 min treatment at initial concentrations of 30 mg/l. The adsorbent exhibited good sorption potential for cadmium at pH 8.0 and equilibrium temperature of 30℃. Based on the results, this study had proved that activated carbon from Leucaena leucocephala biomass have the good potential to be used for removal of cadmium from wastewater.
Go to article

Authors and Affiliations

W.M.H.W. Ibrahim
1
N.S. Sulaiman
2
M.H.M. Amini
1
W.R.A. Kadir
3
M. Mohamed
1
S.F.M. Ramle
1
U. Bilgin
4
W. Rahman
5 6

  1. Universiti Malaysia Kelantan, Faculty of Bioengineering and Technology, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
  2. Universiti Sains Malaysia, School of Industrial Technology, 11800 Minden, Penang, Malaysia
  3. Forest Research Institute Malaysia, 52109 Kuala Lumpur, Selangor, Malaysia
  4. Karadeniz Technical University, Faculty of Forestry, 61080 Trabzon, Turkey
  5. Universiti Malaysia Perlis, Faculty of Mechanical Engineering Technology, Perlis, Malaysia
  6. Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

In this work, zinc oxide (ZnO) thin films are deposited on glass substrate using the sol-gel spin coating technique. The effect of annealing temperature on structural properties was investigated. The ZnO sol-gel was produced from zinc acetate dehydrate as the starting material with iso-propanol alcohol as the stabilizer. The ratio was controlled, distilled water and diethanolamine as the solvent mixing on a magnetic stirrer for an hour under constant heat of 60°C. The ZnO thin film was deposited using the spin coating technique with the speed of 3000 rpm for 30 minutes before the sample undergoes pre-heat in the oven at the temperature of 100°C for 10 minutes. The sample was annealing in the furnace for an hour at 200°C, 350°C, and 500°C. The X-ray diffraction (XRD) analysis confirms that hexagonal wurtzite structure with zincite and zinc acetate hydroxide hydrate composition. The thin films surface roughness was analyzed using an atomic force microscope (AFM) and scanning electron microscope (SEM) for surface morphology observation.
Go to article

Authors and Affiliations

R. Hussin
1 2 3
ORCID: ORCID
F. Hanafi
2
R.A. Rashid
1
Z. Harun
2 4
Z. Kamdi
2
S.A. Ibrahim
1 4
A.R. Ainuddin
2
W. Rahman
5 3
A.M. Leman
1 3

  1. Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, Department of Mechanical Engineering Technology, Jalan Edu Hub Gunasama1, Pagoh Edu Hub, KM1, Jln Panchor, 84600 Pagoh Johor, Malaysia
  2. Universiti Tun Hussein Onn Malaysia, Faculty of Mechanical and Manufacturing Engineering, Parit Raja, 86400 Batu Pahat, Johor, Malaysia
  3. Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Perlis, Malaysia
  4. Universiti Tun Hussein Onn Malaysia, Faculty of Mechanical and Manufacturing Engineering, Integrated Material and Process, Advanced Manufacturing & Materials Centre, Parit Raja, 86400 Batu Pahat, Johor, Malaysia
  5. Universiti Malaysia Perlis, Faculty of Mechanical Engineering Technology, Perlis, Malaysia

This page uses 'cookies'. Learn more