Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The work presents a numerical investigation for the convective heat transfer of nanofluids under a laminar flow inside a straight tube. Different models applied to investigate the improvement in convective heat transfer, and Nusselt number in comparison with the experimental data. The impact of temperature dependence, temperature independence, and Brownian motion, was studied through the used models. In addition, temperature distribution and velocity field discussed through the presented models. Various concentrations of nanoparticles are used to explore the results of each equation with more precision. It was shown that achieving the solution through specific models could provide better consistency between obtained results and experimental data than the others.
Go to article

Bibliography

[1] Mirmasoumi S., Behzadmehr A.: Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model. Appl. Therm. Eng. 28(2008), 7, 717–727.
[2] Bianco V., Manca O., Nardini S.: Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube. Int. J. Therm. Sci. 50(2011), 3, 341–349.
[3] Masuda H., Ebata A., Teramae K.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei 7(1993), 4, 227–233. 94 F.R. Saeed and M.A. Al-Dulaimi
[4] Choi S.U.S., Eastman J.A.: Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab., ANL/MSD/CP-84938, CONF-951135-29, 1995.
[5] Daungthongsuk W., Wongwises S.: A critical review of convective heat transfer of nanofluids. Renew. Sustain. Energy Rev. 11(2007), 5, 797–817.
[6] Godson L., Raja B., Lal D.M., Wongwises S.: Enhancement of heat transfer using nanofluids – an overview. Renew. Sustain. Energy Rev 14(2010), 2, 629–641.
[7] Pak B.C., Cho Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer 11(1998), 2, 151–170.
[8] Eastman J.A.: Novel thermal properties of nanostructured materials. Argonne National Lab., ANL/MSD/CP-96711, 1999.
[9] Wen D., Ding Y.: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. Heat Mass Tran. 47(2004), 24, 5181–5188.
[10] Vajjha R.S., Das D.K.: Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int. J. Heat Mass Tran. 52(2009), 21-22, 4675–4682.
[11] Ebrahimnia-Bajestan E., Niazmand H., Duangthongsuk W., Wongwises S.: Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime. Int. J. Heat Mass Tran. 54(2011), 19-20, 4376–4388.
[12] Lee S., Choi S.S., Li S.A., Eastman J.A.: Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transf. 121(1999), 2, 280–289.
[13] Wang X., Xu X., Choi S.U.S.: Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Tr. 13(1999), 4, 474–480.
[14] Maiga S.E.B., Palm S.J., Nguyen C.T., Roy G., Galanis N.: Heat transfer enhancement by using nanofluids in forced convection flows. Int. J. Heat Fluid Fl. 26(2005), 4, 530–546.
[15] Corcione M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energ. Convers. Manage. 52(2011), 1, 789–793.
[16] Onyiriuka E.J., Obanor A.I., Mahdavi M., Ewim D.R.E.: Evaluation of singlephase, discrete, mixture and combined model of discrete and mixture phases in predicting nanofluid heat transfer characteristics for laminar and turbulent flow regimes. Adv. Powder Technol. 29(2018), 11, 2644–2657.
[17] Bianco V., Chiacchio F., Manca O., Nardini S.: Numerical investigation of nanofluids forced convection in circular tubes. Appl. Therm. Eng. 29(2009), 17–18, 3632–3642.
[18] Moraveji M.K., Ardehali R.M.: CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink. Int. Commun. Heat Mass 44(2013), 157–164.
[19] Vanaki S.M., Ganesan P., Mohammed H.A.: Numerical study of convective heat transfer of nanofluids: a review. Renew. Sustain. Energy Rev. 54(2016), 1212–1239.
[20] He Y., Men Y., Zhao Y., Lu H., Ding Y.: Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions. Appl. Therm. Eng. 29(2009), 10, 1965–1972.
[21] Khanafer K., Vafai K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Tran. 54(2011), 19-20, 4410–4428.
[22] Koo J., Kleinstreuer C.: A new thermal conductivity model for nanofluids. J. Nanopart. Res. 6(2004), 6, 577–588.
[23] Kim D., Kwon Y., Cho Y., Li C., Cheong S., Hwang Y., Moon S.: Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr. Appl. Phys. 9(2009), 2, 119–123.
[24] Mcnab G.S., Meisen A.: Thermophoresis in liquids. J. Colloid Inter. Sci. 44(1973), 2, 339–346.
[25] Shah R.K.: Laminar Flow Forced Convection in Ducts. Academic Press, A.L. London, New York, 1978. p.128.
[26] https://www.comsol.com/release/5.4 (accessed: 20 May 2020).
Go to article

Authors and Affiliations

Farqad Rasheed Saeed
1
Marwah Abdulkareem Al-Dulaimi

  1. Ministry of Science and Technology, Directorate of Materials Research, 55509 Al-Jadriya, Iraq

This page uses 'cookies'. Learn more