Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The major difference between a continuous mode optical regenerator (CMOR) and a burst mode optical regenerator (BMOR) is that a BMOR is capable of handling large variations in the input power which makes it useful in optical packet switched and optical burst switched networks. This is due to the optical limiting amplifier (OLA) present in the BMOR. Using computer modelling, the impact of using different OLA non-linear transfer functions on the output bit error rate of a system consisting of a cascade of 2R BMORs has been investigated. The effect of amplified spontaneous emission (ASE) noise introduced in the inter-regenerator links has also been taken into consideration. Also, a brief review of existing OLA designs is presented.
Go to article

Bibliography

[1] O. Leclerc et al., “Optical regeneration at 40 Gb/s and beyond,” J. Light. Technol., vol. 21, no. 11, pp. 2779–2790, Nov. 2003, doi: 10.1109/JLT.2003.819148.
[2] P. G. Patki et al., “Recent Progress on Optical Regeneration of Wavelength-Division-Multiplexed Data,” IEEE J. Sel. Top. Quantum Electron., vol. 27, no. 2, pp. 1–12, 2021, doi: 10.1109/JSTQE.2020.3025482.
[3] A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All- Optical Signal Processing,” J. Light. Technol., vol. 32, no. 4, pp. 660– 680, 2014, doi: 10.1109/JLT.2013.2287219.
[4] D. Kulal, K. Pai, R. Padiyar, and P. D. Kakade, “Significance of 2R Continuous Mode Optical Regenerators (CMORs) in Optical Network Impaired by Optical Linear Crosstalk,” 2019, doi: 10.1109/DISCOVER47552.2019.9008100.
[5] J. P. Jue, W.-. Yang, Y.-. Kim, and Q. Zhang, “Optical packet and burst switched networks: a review,” IET Commun., vol. 3, no. 3, pp. 334–352, Mar. 2009, doi: 10.1049/iet-com:20070606.
[6] P. N. Desai, A. J. Phillips, and S. Sujecki, “Modeling of burst mode 2R optical regenerator cascades for long-haul optical networks,” J. Opt. Commun. Netw., vol. 4, no. 4, 2012, doi: 10.1364/JOCN.4.000304.
[7] P. N. Desai, A. J. Phillips, and S. Sujecki, “Performance evaluation for 2R burst mode optical regenerator cascades in presence of co-channel phase uncorrelated crosstalk,” 2012, doi: 10.1109/ICTON.2012.6254385.
[8] R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40-gb/s burst-mode optical 2R regenerator,” IEEE Photonics Technol. Lett., vol. 17, no. 10, pp. 2194–2196, Oct. 2005, doi: 10.1109/LPT.2005.856364.
[9] G. T. Kanellos et al., “All-Optical 3R Burst-Mode Reception at 40 Gb/s Using Four Integrated MZI Switches,” J. Light. Technol., vol. 25, no. 1, pp. 184–192, Jan. 2007, doi: 10.1109/JLT.2006.888169.
[10] P. Zakynthinos et al., “Cascaded Operation of a 2R Burst-Mode Regenerator for Optical Burst Switching Network Transmission,” IEEE Photonics Technol. Lett., vol. 19, no. 22, pp. 1834–1836, Nov. 2007, doi: 10.1109/LPT.2007.907580.
[11] D. Petrantonakis, P. Zakynthinos, D. Apostolopoulos, A. Poustie, G. Maxwell, and H. Avramopoulos, “All-Optical Four-Wavelength Burst Mode Regeneration Using Integrated Quad SOA-MZI Arrays,” IEEE Photonics Technol. Lett., vol. 20, no. 23, pp. 1953–1955, Dec. 2008, doi: 10.1109/LPT.2008.2005736.
[12] S.-K. Liaw and S. Chi, “Experimental investigation of a fiber Bragg grating integrated optical limiting amplifier with high dynamic range,” Opt. Eng., vol. 37, no. 7, pp. 2101–2103, 1998, doi: 10.1117/1.601800. [13] H. Wessing, B. Sorensen, B. Lavigne, E. Balmefrezol, and O. Leclerc, “Combining control electronics with SOA to equalize packet- to-packet power variations for optical 3R regeneration in optical networks at 10 Gbit/s,” in Optical Fiber Communication Conference, 2004. OFC 2004, 2004, vol. 1, p. 621. [14] M. Presi, S. Gupta, N. Calabretta, G. Contestabile, and E. Ciaramella, “DPSK Packet-Level Power Equalization by means of Nonlinear Polarization Rotation in an SOA,” in 2007 Photonics in Switching, 2007, pp. 157–158, doi: 10.1109/PS.2007.4300792. [15] S. V Pato, R. Meleiro, D. Fonseca, P. Andre, P. Monteiro, and H. Silva, “All-Optical Burst-Mode Power Equalizer Based on Cascaded SOAs for 10-Gb/s EPONs,” IEEE Photonics Technol. Lett., vol. 20, no. 24, pp. 2078–2080, 2008, doi: 10.1109/LPT.2008.2006629. [16] N. Pleros, G. T. Kanellos, C. Bintjas, A. Hatziefremidis, and H. Avramopoulos, “Optical power limiter using a saturated SOA-based interferometric switch,” IEEE Photonics Technol. Lett., vol. 16, no. 10, pp. 2350–2352, 2004, doi: 10.1109/LPT.2004.833960. [17] X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photonics Technol. Lett., vol. 16, no. 6, pp. 1582–1584, 2004, doi: 10.1109/LPT.2004.826732. [18] B. Cao and J. E. Mitchell, “Modelling optical burst equalisation in next generation access network,” in 2010 12th International Conference on Transparent Optical Networks, 2010, pp. 1–4, doi: 10.1109/ICTON.2010.5549289. [19] M. J. O’Mahony, C. Politi, D. Klonidis, R. Nejabati, and D. Simeonidou, “Future Optical Networks,” J. Light. Technol., vol. 24, no. 12, pp. 4684–4696, 2006, doi: 10.1109/JLT.2006.885765. [20] Y. Su, X. Liu, and J. Leuthold, “Wide dynamic range 10-Gb/s DPSK packet receiver using optical-limiting amplifiers,” IEEE Photonics Technol. Lett., vol. 16, no. 1, pp. 296–298, 2004, doi: 10.1109/LPT.2003.818914. [21] O. C. Graydon, M. N. Zervas, and R. I. Laming, “Erbium-doped-fiber optical limiting amplifiers,” J. Light. Technol., vol. 13, no. 5, pp. 732–739, May 1995, doi: 10.1109/50.387790. [22] C. H. Kim, C. R. Giles, and Y. C. Chung, “Two-stage optical limiting fiber amplifier using a synchronized etalon filter,” IEEE Photonics Technol. Lett., vol. 10, no. 2, pp. 285–287, 1998, doi: 10.1109/68.655386. [23] B. Charbonnier, N. E. Dahdah, and M. Joindot, “OSNR margin brought by nonlinear regenerators in optical communication links,” IEEE Photonics Technol. Lett., vol. 18, no. 3, pp. 475–477, Feb. 2006, doi: 10.1109/LPT.2005.863181. [24] S. L. Tzeng, H. C. Chang, and Y. K. Chen, “Chirped-fibre-grating-based optical limiting amplifier for simultaneous dispersion compensation and limiting amplification in 10 Gbit/s G.652 fibre link,” Electron. Lett., vol. 35, no. 8, pp. 658–660, 1999, doi: 10.1049/el:19990435. [25] Y.-K. Chen, S.-K. Liaw, W.-Y. Guo, and S. Chi, “Multiwavelength erbium-doped power limiting amplifier in all-optical self-healing ring network,” IEEE Photonics Technol. Lett., vol. 8, no. 6, pp. 842–844, 1996, doi: 10.1109/68.502113. [26] M. J. Chawki, E. Delevaque, and L. Berthou, “WDM bidirectional optical power limiting amplifier including circulators, EDFA and fiber grating reflectors,” in Proceedings of European Conference on Optical Communication, 1996, vol. 2, pp. 285–288 vol.2. [27] Y. Su, L. Wang, A. Agarwal, and P. Kumar, “All-optical limiter using gain flattened fibre parametric amplifier,” Electron. Lett., vol. 36, no. 13, pp. 1103–1105, 2000, doi: 10.1049/el:20000798. [28] M. Holtmannspoetter and B. Schmauss, “All Optical Limiter Based on Self Phase Modulation and Dispersive Chirping,” in 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference, 2007, p. 1, doi: 10.1109/CLEOE-IQEC.2007.4386110. [29] M. R. G. Leiria and A. V. T. Cartaxo, “Impact of the Signal and Nonlinearity Extinction Ratios on the Design of Nonideal 2R All-Optical Regenerators,” J. Light. Technol., vol. 26, no. 2, pp. 276–285, Jan. 2008, doi: 10.1109/JLT.2007.909856. [30] S. Primak, V. Kontorovich, and V. Lyandres, Stochastic Methods and their Applications to Communications: Stochastic Differential Equations Approach. 2005.
Go to article

Authors and Affiliations

Yash Deodhar
1
Jeeru Jaya Sankar Reddy
1
Priyanka Desai Kakade
2
Rohan Kakade
3

  1. Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India-576104
  2. Department of Electronics And Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India-576104
  3. Loughborough University, United Kingdom

This page uses 'cookies'. Learn more