Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A n-type semiconductor ZnO has high transmittance features, excellent chemical stability and electrical properties. It is also commonly used in a range of fields, such as gas sensors, photocatalysts, optoelectronics, and solar photocell. Magnesium-doped zinc oxide (Mg-ZnO) nano powders were effectively produced using a basic chemical precipitation process at 45°C. Calcined Mg-ZnO nano powders have been characterized by FTIR, XRD, SEM-EDX and PL studies. XRD measurements from Mg-ZnO revealed development of a crystalline structure with an average particle size of 85 nm and SEM analysis confirmed the spherical morphology. Electrochemical property of produced Mg-ZnO nanoparticles was analyzed and the specific capacitance value of 729 F g–1 at 0.5 A g–1 current density was recorded and retained a specific capacitance ~100 percent at 2 A g–1 current density.
Go to article

Bibliography

[1] M . Kim, K.-J. Kim, S.-J. Lee, H.-M. Kim, S.-Y. Cho, M.-S. Kim, S.-H. Kim, K.-B. Kim, ACS Appl. Mater. Interfaces 9 (1), 701-709 (2017). DOI: https://doi.org/10.1021/acsami.6b12622
[2] S. Choi, S. I. Han, D. Kim, T. Hyeon, D.-H. Kim, Chem. Soc. Rev. 48 (6), 1566-1595 (2019). DOI: https://doi.org/10.1039/C8CS00706C
[3] L .H. Madkour, in Nanoelectron. Mater. Springer, 605-699 (2019). DOI: https://doi.org/10.1007/978-3-030-21621-4_16
[4] M . Rafique, M. B. Tahir, I. Sadaf, in Adv. Res. Nanosci. Water Technol. Springer, 95-131 (2019). DOI: https://doi.org/10.1007/978-3-030-02381-2_5
[5] T. Xiao, J. Huang, D. Wang, T. Meng, X. Yang, Talanta 206, 120210 (2020). DOI: https://doi.org/10.1016/j.talanta.2019.120210
[6] Y. Zhang, X. Xia, B. Liu, S. Deng, D. Xie, Q. Liu, Y. Wang, J. Wu, X. Wang, J. Tu, Adv. Energy Mater. 9 (8), 1803342 (2019). DOI: https://doi.org/10.1002/aenm.201803342
[7] F. Khurshid, M. Jeyavelan, M.S.L. Hudson, S. Nagarajan, R. Soc. Open Sci. 6 (2), 181764 (2019). DOI: https://doi.org/10.1098/rsos.181764
[8] M .M. Sajid, N.A. Shad, Y. Javed, S.B. Khan, N. Amin, Z. Zhang, Z. Imran, M.I. Yousuf, Appl. Nanosci. 10 (2), 421-433 (2020). DOI: https://doi.org/10.1007/s13204-019-01199-8
[9] H . Zeng, X. Zhao, F. Zhao, Y. Park, M. Sillanpää, Chem. Eng. J. 382, 122972 (2020). DOI: https://doi.org/10.1016/j.cej.2019.122972
[10] L . Zheng, F. Teng, X. Ye, H. Zheng, X. Fang, Adv. Energy Mater. 10 (1), 1902355 (2020). DOI: https://doi.org/10.1002/aenm.201902355
[11] M . Periyasamy, A. Kar, J. Mater. Chem. C 8 (14), 4604-4635 (2020). DOI: https://doi.org/10.1039/C9TC06469A
[12] S.K. Gupta, S. Gupta, A.K. Gupta, Adv. Sci. Eng. Med. 12 (1), 11-26 (2020). DOI: https://doi.org/10.1166/asem.2020.2516
[13] Z. Li, A. Khajepour, J. Song, Energy 182, 824-839 (2019). DOI: https://doi.org/10.1016/j.energy.2019.06.077
[14] S.A. Hashmi, N. Yadav, M.K. Singh, Polym. Electrolytes Charact. Tech. Energy Appl. 231-297 (2020). DOI: https://doi.org/10.1002/9783527805457.ch9
[15] X. Kong, L. Yang, Z. Cheng, S. Zhang, Materials 13 (1), 180 (2020). DOI: https://doi.org/10.3390/ma13010180
[16] B. Zhao, F. Mattelaer, J. Kint, A. Werbrouck, L. Henderick, M. Minjauw, J. Dendooven, C. Detavernier, Electrochimica Acta 320, 134604 (2019). DOI: https://doi.org/10.1016/j.electacta.2019.134604
[17] Y. Wang, C. Ma, C. Wang, P. Cheng, L. Xu, L. Lv, H. Zhang, Sol. Energy 189, 412-420 (2019). DOI: https://doi.org/10.1016/j.solener.2019.07.082
[18] J. Jiang, S. Liu, Y. Wang, Y. Liu, J. Fan, X. Lou, X. Wang, H. Zhang, L. Yang, Chem. Eng. J. 359, 746-759 (2019). DOI: https://doi.org/10.1016/j.cej.2018.11.190
[19] H .M.A. Javed, W. Que, M.R. Ahmad, K. Ali, M.I. Ahmad, A. ul Haq, S.K. Sharma, in Sol. Cells (Springer, 2020), pp. 25-54. DOI: https://doi.org/10.1007/978-3-030-36354-3
[20] S.E. Arasi, P. Devendran, R. Ranjithkumar, S. Arunpandiyan, A. Arivarasan, Mater. Sci. Semicond. Process. 106, 104785 (2020). DOI: https://doi.org/10.1016/j.mssp.2019.104785
[21] H .-C. Chen, Y.R. Lyu, A. Fang, G.J. Lee, L. Karuppasamy, J.J. Wu, C.K. Lin, S. Anandan, C.Y. Chen, Nanomaterials 10 (3), 475 (2020). DOI: https://doi.org/10.3390/nano10030475
[22] N . Sivakumar, J. Gajendiran, R. Jayavel, Chem. Phys. Lett. 745, 137262 (2020). DOI: https://doi.org/10.1016/j.cplett.2020.137262
[23] M .A.F. Mohd Shaifuddin, C.A. Che Abdullah, S.H. Ribut, N.S. Rosli, R. Mohd Zawawi, Malays. J. Sci. Health Technol. (2019). https://oarep.usim.edu.my/jspui/handle/123456789/5353
[24] G. Wu, Y. Song, J. Wan, C. Zhang, F. Yin, J. Alloys Compd. 806, 464-470 (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.07.175
[25] S. Kasap, I.I. Kaya, S. Repp, E. Erdem, Nanoscale Adv. 1 (7), 2586-2597 (2019). DOI: https://doi.org/10.1039/C9NA00199A
[26] U . Bhat, S. Meti, Graphene-Based ZnO nanocomposites for Supercapacitor Applications in Graphene as Energy Storage Materials for Supercapacitors, Eds. Inamuddin, Rajender Boddula, Mohammad Faraz Ahmer and Abdullah M. Asiri, Materials Research Foundations 64, 181 (2020). DOI: https://doi.org/10.21741/9781644900550-7
[27] M . Ghosh, S. Mandal, A. Roy, S. Chakrabarty, G. Chakrabarti, S.K. Pradhan, Mater. Sci. Eng. C 106, 110160 (2020). DOI: https://doi.org/10.1016/j.msec.2019.110160
[28] R . Subbiah, S. Muthukumaran, V. Raja, Optik 164556 (2020). DOI: https://doi.org/10.1016/j.ijleo.2020.164556
[29] R . Sánchez-Tovar, E. Blasco-Tamarit, R.M. Fernández-Domene, M. Villanueva-Pascual, J. García-Antón, Surf. Coat. Technol. 125605 (2020). DOI: https://doi.org/10.1016/j.surfcoat.2020.125605
[30] N . Jayaprakash, R. Suresh, S. Rajalakshmi, S. Raja, E. Sundaravadivel, M. Gayathri, M. Sridharan, Mater. Technol. 35 (2), 112-124 (2020). DOI: https://doi.org/10.1080/10667857.2019.1659533
[31] M . Achehboune, M. Khenfouch, I. Boukhoubza, B.M. Mothudi, I. Zorkani, A. Jorio, J. Mater. Sci. Mater. Electron. 31 (6), 4595- 4604 (2020). DOI: https://doi.org/10.1007/s10854-020-03011-8
[32] C.V. Thulasi-Varma, B. Balakrishnan, H.-J. Kim, J. Ind. Eng. Chem. 81, 294-302 (2020). DOI: https://doi.org/10.1016/j.jiec.2019.09.017
[33] J. Yus, B. Ferrari, A.J. Sanchez-Herencia, Z. Gonzalez, Electrochimica Acta 335, 135629 (2020). DOI: https://doi.org/10.1016/j.electacta.2020.135629
[34] N . Liu, Z. Pan, X. Ding, J. Yang, G. Xu, L. Li, Q. Wang, M. Liu, Y. Zhang, J. Energy Chem. 41, 209-215 (2020). DOI: https://doi.org/10.1016/j.jechem.2019.05.008
[35] M . Bolsinger, M. Weller, S. Ruck, P. Kaya, H. Riegel, V. Knoblauch, Electrochimica Acta. 330, 135163 (2020). DOI: https://doi.org/10.1016/j.electacta.2019.135163
[36] H . Jia, Z. Wang, B. Tawiah, Y. Wang, C.-Y. Chan, B. Fei, F. Pan, Nano Energy 70, 104523 (2020). DOI: h ttps://doi.org/10.1016/j.nanoen.2020.104523
Go to article

Authors and Affiliations

S. Arul
1
ORCID: ORCID
T. Senthilnathan
2
ORCID: ORCID
V. Jeevanantham
3
ORCID: ORCID
K.V. Satheesh Kumar
4
ORCID: ORCID

  1. Jai Shriram Engineering College, Department of Physics, Tirupur-638660, Tamilnadu, India
  2. Sri Venkateshwara College of Engineering, Department of Applied Physics, Sriperumbudur-602117, Tamilnadu, India
  3. Vivekanandha College of Arts & Sciences for Women, Department of Chemistry, Tiruchengode 637205, Tamilnadu, India
  4. Kongu Engineering College, Department of Mechanical Engineering, Erode-638060, Tamilnadu, India

This page uses 'cookies'. Learn more