Search results

Filters

  • Journals

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the current study of the distribution of stresses for four-point contact wire race ball bearing. The main aim of this article is to define the most important geometrical rules in a wire-race bearing. The results for bearings of different geometrical parameters are presented. In the study, one also estimates the distribution of internal pressure in particular bearing elements.

Go to article

Bibliography

[1] Franke GmbH. Drahtwaelzlager, 2014. (in German).
[2] T. Solnicki. Large-diameter rolling bearings. Global and local problems. Publishing House of Wroclaw University of Science and Technology, 2013. (in Polish).
[3] E. Rusinski, J. Czmochowski, and T. Smolnicki. Advanced Finite Elements Method in carrying structures. Publishing House of Wroclaw University of Science and Technology, 2000. (in Polish).
[4] L. Kania. Local problems in numerical modeling of slewing bearings. Publishing House of Czestochowa University of Technology, 2012. (in Polish).
[5] L. Kania. Analysis of inner load in slewing bearings. Publishing House of Czestochowa University of Technology, 2005. (in Polish).
[6] H. Hertz. On the contact of rigid elastic solids and on hardness. In Miscellaneous Papers, pages 163–183. MacMillan, London, 1896.
[7] G. Lundberg and H. Sjovall. Stress and Deformation in Elastic Contacts. Gothenburg: Institution of Theory of Elasticity and Strength of Materials, Chalmers University of Technology, 1958.
[8] A. Palmgren. Ball and Roller Bearing Engineering. SKF Industries, Philadelphia, 3rd edition, 1959.
[9] N.M. Bielajew. Computation of maximal stresses obtained from formulas for pressure in bodies in contact. In Bull. Eng. Ways Commun. Leningrad, 1929.
[10] A. Daidié, Z. Chaib, and A. Ghosn. 3D simplified finite elements analysis of load and contact angle in a slewing ball bearing. Journal of Mechanical Design, 130(8):082601–082601–8, 2008. doi: 10.1115/1.2918915.
[11] You Hui-yuan, Zhu Chun-xi, and Li Wu-Xing. Contact analysis on large negative clearance four-point contact ball bearing. Procedia Engineering, 37:174–178, 2012. doi: 10.1016/j.proeng.2012.04.222.
[12] Abaqus/CAE User’s Manual.
[13] P. Göncz, M. Ulbin, and S. Glodež. Computational assessment of the allowable static contact loading of a roller-slewing bearing’s case-hardened raceway. International Journal of Mechanical Sciences, 94:174–184, May 2015. doi: 10.1016/j.ijmecsci.2015.03.006.
[14] R. Pandiyarajan, M.S. Starvin, and K.C. Ganesh. Contact stress distribution of large diameter ball bearing using Hertzian elliptical contact theory. Procedia Engineering, 38:264–269, 2012. doi: 10.1016/j.proeng.2012.06.034.
[15] R. Lostado, R.F. Martinez, and B.J. Mac Donald. Determination of the contact stresses in double-row tapered roller bearings using the finite element method, experimental analysis and analytical models. J ournal of Mechanical Science and Technology, 29(11):4645–4656, 2015. doi: 10.1007/s12206-015-1010-4.
[16] S.W. Hong and V.C. Tong. Rolling-element bearing modeling: A review. International Journal of Precision Engineering and Manufacturing, 17(12):1729–1749, 2016. doi: 10.1007/s12541-016-0200-z.
[17] I. Heras, J. Aguirrebeitia, and M. Abasolo. Friction torque in four contact point slewing bearings: Effect of manufacturing errors and ring stiffness. Mechanism and Machine Theory, 112:145–154, June 2017. doi: 10.1016/j.mechmachtheory.2017.02.009.
Go to article

Authors and Affiliations

Dominik Gunia
1
Tadeusz Smolnicki
1

  1. Wroclaw University of Science and Technology, Poland

This page uses 'cookies'. Learn more