Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Casting is one method of making metal components that are widely used in industry and up to date. The sand casting method is used due to its simplicity, ease of operation, and low cost. In addition, the casting method can produce cast products in various sizes and is well-suited for mass production. However, the disadvantage of casting, especially gravity casting, is that it has poor physical and mechanical properties.
Tin bronze Cu20%wt.Sn is melted in a furnace, then poured at a temperature of 1100°C into a sand mold. The cast product is a rod with 400 mm in length, 10 mm in thickness, and 10 mm in width. The heat treatment mechanism is carried out by reheating the cast specimen at a temperature of 650°C, holding it for 4 hours, and then rapid cooling. The specimens were observed microstructure, density, and mechanical properties include tensile strength and bending strength. The results showed that there was a phase change from α + δ to α + β phase, an increase in density as a result of a decrease in porosity and a coarse grain to a fine grain. In addition, the tensile strength and bending strength of the Cu20wt.%Sn alloy were increased and resulted in a more ductile alloy through post-cast heat treatment.
Go to article

Bibliography

[1] C.D. Association, (1992). Copper Development Association Equilibrium Diagrams the major types of phase transformation.
[2] He, Z., Jian, C.A.O. & Ji-cai, F. (2009). Microstructure and mechanical properties of Ti6Al4V / Cu-10Sn bronze diffusion-bonded joint. Transaction Nonferrous Metals Society of China. 19, 414-417.
[3] Chen, X., Wang, Z., Ding, D., Tang, H., Qiu, L., Luo, X. & Shi, G. (2015). Strengthening and toughening strategies for tin bronze alloy through fabricating in-situ nanostructured grains. Material and Design. 1-31. ISSN: 0261-3069.
[4] Kohler, F., Campanella, T., Nakanishi, S. & Rappaz, M. (2008). Application of single pan thermal analysis to Cu – Sn peritectic alloys. Acta Materialia. 56, 1519-1528.
[5] Taslicukur, Z., Altug, G.S., Polat, S., Atapek, Ş.H., Turedi E. (2012). A Microstructural study on CuSn10 bronze produced by sand and investment casting techniques. In 21st International Conference on Metallurgy and Materials METAL 2012, 23-25 May 2012 . Brno, Czech Republic, EU.
[6] Goodway M (1992). Metals of Music. Materials Characterization. 29, 177-184.
[7] Audy J, Audy K (2008). Analysis of bell materials: Tin bronzes. China Foundry. 5, 199-204.
[8] Debut, V., Carvalho, M., Figueiredo, E., Antunes, J. & Silva, R. (2016). The sound of bronze: Virtual resurrection of a broken medieval bell. Jurnal of Cultural Heritage. 19, 544-554.
[9] S.Slamet, Suyitno & Kusumaningtyas, I. (2019). Effect of composition and pouring temperature of Cu(20-24)wt.%Sn by sand casting on fluidity and mechanical properties, Journal of Mechanical Engineering and Science. 13(4), 6022-6035.
[10] S. Slamet, Suyitno and Kusumaningtyas, I. (2019). Effect of composition and pouring temperature of Cu-Sn alloys on the fluidity and microstructure by investment casting. IOP Conf. Series: Materials Science and Engineering. 547, 1-8.
[11] S. Slamet, Suyitno, Kusumaningtyas, I. & Miasa, I.M. (2021). Effect of high-tin bronze composition on physical, mechanical, and acoustic properties of gamelan materials. Archives of Foundry Engineering. 21(1), 137-145.
[12] Fletcher, N. (2012). Materials and musical instruments. Acoustics Australia. 40, 30-134.
[13] Sumarsam, (2002). Introduction to javanese gamelan (Javanese Gamelan-Beginners). Syllabus. 451, 1-28.
[14] Salonitis. K., Jolly. M. & Zeng, B. (2017). Simulation based energy and resource efficient casting process chain selection. A case study. Procedia Manufacturing. 8, 67-74.
[15] Sulaiman, S. & Hamouda, A.M.S. (2001). Modeling of the thermal history of the sand casting process. Journal of Materials Processing Technology. 113, 245-250.
[16] Kim, E., Cho, G., Oh, Y. & Junga, Y. (2016). Development of a high-temperature mold process for sand casting with a thin wall and complex shape. Thin Solid Films. 620, 70-75.
[17] S. Slamet, Suyitno, Kusumaningtyas, I. (2019). Forging process on gamelan bar tin bronze Cu-25 wt. % Sn post casting deformation to changes in microstructure, density, hardness, and acoustic properties. IOP Conf. Series: Materials Science and Engineering. 673, 1-9.
[18] S. Slamet, Suyitno, & Kusumaningtyas, I. (2020). Comparative study of bonang gamelan musical instrument between hot forging and Post Cast Heat Treatment / PCHT on microstructure and mechanical properties. IOP Conf. Series: Materials Science and Engineering. 1430, 1-9.
[19] Morando, C., Fornaro, O., Garbellini, O. & Palacio, H. (2015). Fluidity on metallic eutectic alloys. Procedia Materials Science. 8, 959-967.
[20] Pang, S., Wu, G., Liu, W., Sun, M., Zhang, Y., Liu, Z. & Ding, W. (2013). Effect of cooling rate on the microstructure and mechanical properties of sand-casting Mg-10Gd-3Y-0.5 Zr magnesium alloy. Materials Science Engineering A. 562, 152-160.
[21] Chuaiphan, W. & Srijaroenpramong, L. (2013). The Effect of Tin and heat treatment in brass on microstructure and mechanical properties for solving the cracking of nut and bolt. Applied Mechanics and Materials. 389, 237-244.
[22] Sláma, P., Dlouhý, J. & Kövér, M. (2014). Influence of heat treatment on the microstructure and mechanical properties of aluminium bronze. Materials and Technology. 48(4), 599-604.
[23] Hanson. D, Pell-Walpole, W.T. (1951). Chill-Cast Tin Bronzes. 1-368
[24] Sanchez, J.A.B.F., Bolarin, A.M. , Tello, A. & Hernandez, L.E. (2006). Diffusion at Cu / Sn interface during sintering process. Materials Science of Technology. 22, 590-596.
[25] Gupta, R., Srivastava, S., Kishor, N. & Panthi, S.K. (2016). High leaded tin bronze processing during multi-directional forging : Effect on microstructure and mechanical properties. Materials Science Engineering A. 654, 282-291.

Go to article

Authors and Affiliations

S. Slamet
1
S. Suyitno
2
I. K. Indraswari Kusumaningtyas
3

  1. Universitas Muria Kudus, Indonesia
  2. Universitas Tidar Magelang, Indonesia
  3. Universitas Gadjah Mada, Indonesia

This page uses 'cookies'. Learn more