Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents numerical analysis of a typical residential building in the Upper Silesian Coal Basin, which was erected in the early twentieth century and was not protected against mining ground deformations. The greatest impact of ground deformation on buildings are ground horizontal strain ε and ground curvature K. Numerical calculations included the building and the ground to take into account the effect of soilstructure interaction. The structure of the analysed building was made of masonry with wooden ceiling and roof elements. The ground was implemented as a layer 3.0m below the foundations and 3.0 m outside the building's projection. Construction loads are divided into two stages – permanent and functional loads as well as ground mining deformation. The maximum convex curvature K+ and the horizontal strain of the substrate ε+ were achieved in the 8th load step. The results of the analyses were presented in the form of stress and deformation maps. The most important results are the magnitude of the main tensile stresses σmax, which could to create cracks in the structure may occur after exceeding the tensile strength ft of the material. The presented method can be used to the analysis of endangered building objects by mining ground deformations.
Go to article

Bibliography


[1] Ochrona powierzchni przed szkodami górniczymi, Group work, Publishing House Śląsk; 1980.
[2] J. Rusek, L. Słowik, K. Firek, M. Pitas, “Determining the Dynamic Resistance of Existing Steel Industrial Hall Structures for Areas with Different Seismic Activity”. Archives of Civil Engineering LXVI(4): 2020; pp. 525–542; https://doi.org/10.24425/ace.2020.135235.
[3] J. Rusek, W. Kocot, “Proposed Assessment of Dynamic Resistance of the Existing Industrial Portal Frame Building Structures to the Impact of Mining Tremors”. 2017 IOP Conference Series Materials Science and Engineering; 245(3):032020; https://doi.org/10.1088/1757-899X/245/3/032020.
[4] J. Rusek, K. Tajduś, K. Firek, A. Jędrzejczyk, “Bayesian networks and Support Vector Classifier in damage risk assessment of RC prefabricated building structures in mining areas”. 2020 5th International Conference on Smart and Sustainable Technologies (SpliTech); https://doi.org/10.23919/SpliTech49282.2020.9243718
[5] Y. Jiang, R. Misa, K. Tajduś, A. Sroka, Y. Jiang, “A new prediction model of surface subsidence with Cauchy distribution in the coal mine of thick topsoil condition”. Archives of Mining Sciences 65(1): 2020; pp. 147–158; https://doi.org/10.24425/ams.2020.132712.
[6] A. Sroka, S. Knothe, K. Tajduś, R Misa., “Point Movement Trace Vs. The Range Of Mining Exploitation Effects In The Rock Mass”. Archives of Mining Sciences, Vol. 60 (2015), No 4, pp. 921–929; https://doi.org/10.1515/amsc-2015-0060
[7] K. Tajduś, “Analysis of horizontal displacement distribution caused by single advancing longwall panel excavation”. Journal of Rock Mechanics and Geotechnical Engineering 1(4) 2015; https://doi.org/10.1016/j.jrmge.2015.03.012.
[8] R. Bals, “Beitrag zur Frage der Vorausberechnung bergbaulicher Senkungen. Mitteilungen aus dem Markscheidewese”. Verlag Konrad Witter. Stuttgart; 1931/32.
[9] Knothe S., „Równanie profilu ostatecznie wykształconej niecki osiadania”, Archiwum Górnictwa i Hutnictwa, 1953, t.1, z.1.
[10] W. Ehrhard, A. Sauer, “Die Vorausberechnung von Senkung, Schieflage und Krummung uber dem Abbau in flacher Lagerung”. Bergbau-Wissenschaften, 1961.
[11] K. Tajduś, “Numerical Simulation of Underground Mining Exploitation Influence Upon Terrain Surface”. Archives of Mining Sciences 58(3) 2013; https://doi.org/10.2478/amsc-2013-0042.
[12] M. Cała, J. Flisiak, A. Tajduś, „Wpływ niepodsadzkowych wyrobisk przyszybowych na deformacje powierzchni. Człowiek i środowisko wobec procesu restrukturyzacji górnictwa węgla kamiennego”. Biblioteka Szkoły Eksploatacji Podziemnej, 2001, nr 6.
[13] K. Tajduś, S. Knothe, A. Sroka, R. Misa, “Underground exploitations inside safety pillar shafts when considering the effective use of a coal deposit”. Gospodarka Surowcami Mineralnymi 31(3): 2015; pp. 93–110; https://doi.org/10.1515/gospo-2015-0027.
[14] Z. Budzianowski, „Działanie wygiętego podłoża na sztywną budowlę znajdującą się w obszarze eksploatacji górniczej”. Inżynieria i Budownictwo, 1964, nr 6 i 7.
[15] O. Deck, M. Al Heib, F. Homand, “Taking the soil–structure interaction into account in assessing the loading of a structure in a mining subsidence area”. Engineering Structures 2003; 25, pp. 435–448; https://doi.org/10.1016/S0141-0296(02)00184-0
[16] A. Saeidi, O. Deck, T. Verdel, “Development of building vulnerability functions in subsidence regions from empirical methods”. Engineering Structures 2009; 31 (10), pp. 2275–2286; https://doi.org/10.1016/j.engstruct.2009.04.010
[17] J. Kwiatek, “Protection of construction objects in mining areas”. Publishing House of Central Mining Institute, Katowice, (in Polish) 1997; p. 726.
[18] J. Kwiatek, “Construction facilities on mining areas”. Wyd. GiG Katowice (in Polish), 2007; p. 266.
[19] L. Szojda, “Numerical analysis of the influence of non-continuous ground displacement on masonry structure”. Silesian University of Technology Publishing House, Gliwice, Monography (in Polish), p. 194; 2009.
[20] D. Mrozek, M. Mrozek, J. Fedorowicz, “The protection of masonry buildings in a mining area”. Procedia Engineering 193 International Conference on Analytical Models and New Concepts in Concrete and Masonry Structures AMCM’2017, pp.184–191; https://doi.org/10.1016/j.proeng.2017.06.202
[21] R. Misa, K. Tajduś, A. Sroka, “Impact of geotechnical barrier modelled in the vicinity of a building structures located in mining area”. Archives of Mining Sciences 2018; no 4, vol. 63 Kraków, pp. 919–933; https://doi.org/10.24425/ams.2018.124984
[22] A. Sroka, R. Misa, K. Tajduś, M. Dudek, “Analytical design of selected geotechnical solutions which protect civil structures from the effects of underground mining”. https://doi.org/10.1016/j.jsm.2018.10.002
[23] L. Szojda, Ł. Kapusta, “Evaluation of the elastic model of a building on a curved mining ground based on the result of geodetic monitoring”. Archives of Mining Sciences 65(2): 2020; pp. 213–224, https://doi.org/10.24425/ams.2020.133188
[24] L. Szojda, G. Wandzik, “Discontinuous terrain deformation - forecasting and consequences of their occurrence for building structures”. 29th International Conference on Structural Failures, 2019, art. no. 03010 pp. 1–12, https://doi.org/10.1051/matecconf/201928403010
[25] L. Szojda, „Analiza numeryczna zmian naprężeń w konstrukcji ściany wywołanych nieciągłymi deformacjami podłoża górniczego”. Czasopismo Inżynierii Lądowej, Środowiska i Architektury, 2017 t. 34 z. 64, nr 3/I, p. 511–522, https://doi.org/10.7862/rb.2017.142
[26] V. Červenka, L. Jendele, J. Červenka, “ATENA Program documentation”. Part 1, Theory, Prague, 2016, p. 330.
Go to article

Authors and Affiliations

Leszek Szojda
1
ORCID: ORCID
Łukasz Kapusta
2
ORCID: ORCID

  1. Silesian University of Technology, Department of Structural Engineering, ul. Akademicka 5,44-100 Gliwice, Poland
  2. Kielce University of Technology, Department of Environmental, Geomatic and Energy Engineering, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland

This page uses 'cookies'. Learn more