Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Reticuloendotheliosis virus (REV) is an avian oncogenic retrovirus that causes atrophy of immune organs, such as the spleen, thymus, and bursa of Fabricius, leading to severe immunosuppression. However, there is limited information describing the genes or microRNAs (miRNAs) that play a role in replicating REV-spleen necrosis virus (SNV). Our previous miRNA and RNA sequencing data showed that the expression of gga-miR-222b-5p was significantly upregulated in REV-SNV-infected chicken spleens of 7, 14, and 21 dpi compared to non-infected chicken spleens, but mitogen-activated protein kinase 10 (MAPK10), which is related to innate immunity, had the opposite expression pattern. To understand chicken cellular miRNA function in the virus-host interactions during REV infection, we used quantitative reverse transcription PCR (qRT-PCR) to determine whether the expression of gga-miR-222b-5p and MAPK10 in the spleen of specific-pathogen-free chickens at 28, 35, and 42 dpi was consistent with the first 3 time points, and dual-luciferase reporter assay was used to determine the targeting relationship between gga-miR-222b-5p and MAPK10. Results show that MAPK10 was downregulated at all 3 time points; however, significant difference (p<0.01) was noted only at 35 dpi. Moreover, the expression of gga-miR-222b-5p was upregulated; however, significant difference (p<0.01) was observed only at 28 and 35 dpi. A dual-luciferase reporter assay showed that MAPK10 is a direct target of gga-miR-222b-5p. This study suggests that gga-miR-222b-5p may target MAPK10 to promote the REV-SNV-induced tumorigenesis via the RLRs signaling pathway.
Go to article

Bibliography


Bi Y, Xu L, Qiu L, Wang S, Liu X, Zhang Y, Chen Y, Zhang Y, Xu Q, Chang G (2018) Reticuloendotheliosis virus inhi- bits the immune response acting on lymphocytes from peripheral blood of chicken. Fronti Physiol 9:4
Chun-zhi Z, Lei H, An-ling Z, Yan-chao F, Xiao Y, Guang-xiu W, Zhi-fan J, Pei-yu P, Qing-yu Z, Chun-sheng K (2010). MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radio-resistance by targeting PTEN. BMC Cancer 10: 1-10.
Dai Z, Ji J, Yan Y, Lin W, Li H, Chen F, Liu Y, Chen W, Bi Y, Xie Q (2015) Role of gga-miR-221 and gga-miR-222 during tumour for-mation in chickens infected by subgroup J avian leukosis virus. Viruses 7: 6538-6551.
Fiorucci G, Chiantore MV, Mangino G, Romeo G (2015) MicroRNAs in virus-induced tumorigenesis and IFN system. Cytokine Growth Factor Reviews 26: 183-194.
Gao C, Dang S, Zhai J, Zheng S (2020) Regulatory mechanism of microRNA-155 in chicken embryo fibroblasts in response to reticuloendo-theliosis virus infection. Vet Microbiol 242: 108610.
Gao S, Jiang H, Sun J, Diao Y, Tang Y, Hu J (2019a) Integrated analysis of miRNA and mRNA expression profiles in spleen of specific pathogen-free chicken infected with avian reticuloendotheliosis virus strain SNV. Int J Mol Sci 20: 1041.
Garofalo M, Quintavalle C, Romano G, M croce C, Condorelli G (2012) miR221/222 in cancer: their role in tumor progression and response to therapy. Curr Mol Med 12: 27-33.
Kunde S A, Rademacher N, Tzschach A, Wiedersberg E, Ullmann R, Kalscheuer V M, Shoichet S A (2013) Characterisation of de novo MAPK10/JNK3 truncation mutations associated with cognitive disorders in two unrelated patients. Hum Genet 132: 461-471.
Lee H, Kim K R, Cho N H, Hong S R, Jeong H, Kwon S Y, Park K H, An H J, Kim T H, Kim I (2014) MicroRNA expression profiling and Notch1 and Notch2 expression in minimal deviation adenocarcinoma of uterine cervix. World J Surg Oncol 12: 1-9.
Li H, Ji J, Xie Q, Shang H, Zhang H, Xin X, Chen F, Sun B, Xue C, Ma J (2012) Aberrant expression of liver microRNA in chickens in-fected with subgroup J avian leukosis virus. Virus Res 169: 268-271.
Sandford E E, Orr M, Balfanz E, Bowerman N, Li X, Zhou H, Johnson T J, Kariyawasam S, Liu P, Nolan L K (2011) Spleen transcriptome response to infection with avian pathogenic Escherichia coli in broiler chickens. BMC Genomics 12: 469.
Yao Y, Vasoya D, Kgosana L, Smith L P, Gao Y, Wang X, Watson M, Nair V (2017) Activation of gga-miR-155 by reticuloendotheliosis virus T strain and its contribution to transformation. J Gen Virol 98: 810.
Ying J, Li H, Cui Y, Wong A, Langford C, Tao Q (2006) Epigenetic disruption of two proapoptotic genes MAPK10/ /JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia 20: 1173-1175.
Yu Z, Gao X, Liu C, Lv X, Zheng S (2017) Analysis of microRNA expression profile in specific pathogen-free chickens in response to retic-uloendotheliosis virus infection. Appl Microbiol Biot 101: 2767-2777.
Go to article

Authors and Affiliations

H. Jiang
1 2 3
S. Gao
4
M. Mao
1 2 3
Y. Diao
1 2 3
Y. Tang
1 2 3
J. Hu
1 2 3

  1. College of Veterinary Medicine, Shandong Agricultural University, No.61 Daizong Street, Tai’an 271018, China
  2. Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No.61 Daizong Street, Tai’an 271018, China
  3. Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No.61 Daizong Street, Tai’an 271018, China
  4. Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizi Shan Street, Wu’han 430070, China
Download PDF Download RIS Download Bibtex

Abstract

A novel avian orthoreovirus (N-ARV) variant characterized with obvious arthritis and synovial inflammation, was isolated from Shandong, China in May 2016. It caused chicken poor growth and enormous economic losses to the poultry industry of China. However, there are few effective methods for detecting the antibody levels of N-ARV. In this study, a viral structural protein σC was expressed using the prokaryotic expression vector pET32a (+). The target protein was obtained by inducing for 6 hours at an IPTG concentration of 0.6mM. The optimal dilution of the coating antigen and serum antibody were determined to be 1000 fold and 10 fold respectively. A specificity test showed that there was no positive reactivity between N-ARV and other pathogens, and when the positive serum was diluted 100 times detection results were still checkable. The repeatability of this method was determined by the inter assay and intra assay tests with variability ranging from 4.85% to 7.93%. In conclusion, this indirect enzyme linked immunosorbent assay (ELISA) will be useful for large-scale serological surveys and monitoring antibody levels in N-ARV infection.
Go to article

Bibliography

Adair BM, Burns K, McKillop ER (1987) Serological studies with reoviruses in chickens, turkeys and ducks. Comp Pathol 97:495-501.
Ayalew LE, Gupta A, Fricke J, Ahmed KA, Popowich S, Lockerbie B (2017) Phenotypic, genotypic and antigenic characterization of emerging avian reoviruses isolated from clinical cases of arthritis in broilers in saskatchewan. Scientific Reports 7: 3565.
Benavente J, Martinezcostas J (2007) Avian reovirus: structure and biology. Virus Res 123:105–119. Bodelón G, Labrada L, Martønez-Costas J (2001) The avian reovirus genome segment S1 is a functionally tricistronic gene that expresses One structural and two nonstructural proteins in infected cells. Virology 290:181-191.
Caterina, KM, Frasca S, Girshick T, Khan M (2004) Development of a multiplex pcr for detection of avian adenovirus, avian reovirus, infectious bursal disease virus, and chicken anemia virus. Molecular and Cellular Probes 18: 293-298.
Curtis PE, Al-Mufarrej SI, Jones RC, Morris J, Sutton PM (1992) Tenosynovitis in young pheasants associated with reovirus, staphylococci and environmental factors. Veterinary Record 131: 293.
Dandár E, Bálint Á, Kecskeméti S (2013) Detection and characterization of a divergent avian reovirus strain from a broiler chicken with central nervous system disease. Arch Virol. 158: 2583-2588.
Dutta SK , Pomeroy BS (1967) Isolation and characterization of an enterovirus from baby chicks having an enteric infection II. Physical and chemical characteristics and ultrastructure. Avian Dis 11: 9-15.
Fahey JE , Crawley JF (1954) Studies On Chronic Respiratory Disease Of Chickens II. Isolation of A Virus. Can J Comp Med Vet Sci 18: 13-21.
Guo K, Dormitorio TV, Ou SC Giambrone JJ (2011) Development of TaqMan real-time RT-PCR for detection of avian reoviruses. Virol Methods 177: 75-79.
Heggen-Peay CL, Qureshi MA, Edens FW (2002) Isolation of a reovirus from poult enteritis and mortality syndrome and its pathogenicity in turkey poults. Avian Dis 100: 102-105
Howell SH, Walker LL ( 1972) Synthesis of DNA in toluenetreated Chlamydomonas reinhardi (DNA replication-chloroplast DNA-cell cycle-electron microscopy). Proceedings of the National Academy of Sciences of the United States of America 69: 490-494.
Ide PR, Dewitt W (1979) Serological incidence of avian reovirus infection in broiler-breeders and progeny in Nova Scotia. Canadian Veterinary Journal La Revue Vétérinaire Canadienne 20: 348.
Jones RC, Kibenge F (1984) Reovirus-induced tenosynovitis in chickens: The effect of breed. Avian Pathol 13: 511-528.
Jones RC, Savage CE (1987) Effects of experimental immunosuppression on reovirus-induced tenosynovitis in light- -hybrid chickens. Avian Pathol 14: 51-58.
Lin FQ, Qi-Lin HU, Chen SY (2007) Diagnosis of Muscovy Duck Reovirus Disease by Semi-Nested RT-PCR. Journal of South China Agricultural University 16: 61-68.
Liu HJ, Giambrone JJ, Nielsen BL (1997) Molecular characterization of avian reoviruses using nested PCR and nucleotide sequence analysis. J Virol Methods 65: 159-167.
Liu Y, Wan W, Gao D ( 2016) Genetic characterization of novel fowl aviadenovirus 4 isolates from outbreaks of hepatitis-hydropericardium syndrome in broiler chickens in China. Emerg Microbes Infect 5: 117.
Marks M , Marks JL (2016) Viral arthritis. Clinical Medicine 1: 16-19. Mor SK, Sharafeldin TA, Porter RE (2014) Molecular characterization of L class genome segments of a newly isolated turkey arthritis reovirus. Infect Genet Evol 27: 193-201.
Mor SK, Sharafeldin TA, Porter RE (2013) Isolation and characterization of a turkey arthritis reovirus. Avian Dis 57: 97-103.
Noh JY, Lee DH, Lim TH, Lee J H, Day JM, Song CS (2018) Isolation and genomic characterization of a novel avian orthoreovirus strain in Korea, Arch Virol 163: 1-10.
Victor PT, Darko M, Tom I, Frank V, Faizal A (2018) Molecular characterization of emerging avian reovirus variants isolated from viral arthritis cases in western canada 2012-2017 based on partial sigma (σ)c gene. Virology 522: 138-146.
Palya V, Glávits R, Dobos-Kovács M, É Ivanics, Nagy, E, K Bányai (2003) Reovirus identified as cause of disease in young geese. Avian Pathol 32: 129-138.
Xie L, Xie Z, Wang S, Deng X, Xie Z (2020) Study of the activation of the pi3k/akt pathway by the motif of σa and σns proteins of avian reovirus. Innate Immunity 26: 4.
Rendón-Anaya M, Montero-Vargas JM, Saburido-Álvarez S, Vlasova A, Herrera-Estrella A (2017) Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biology 18: 60.
Sharafeldin TA, Mor SK, Bekele AZ, Verma H, Noll SL, Goyal SM (2015) Experimentally induced lameness in turkeys inoculated with a newly emergent turkey reovirus. Veterinary Research 46: 11.
Shien JH, Yin HS , Lee LH (2000) An enzyme-linked immunosorbent assay for the detection of antibody to avian reovirus by using protein σ B as the coating antigen. Res Vet Sci. 65: 60
Wen L, Hwh B, Ming H, Long H, Hjlb C (2004) Avian reovirus σc protein induces apoptosis in cultured cells. Virology 321: 65-74.
Tang Y, Lu H (2015) Genomic characterization of a broiler reovirus field strain detected in pennsylvania. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 31: 177-182.
Tang Y, Lin L, Sebastian A, Lu H (2016) Detection and characterization of two co-infection variant strains of avian orthoreovirus (ARV) in young layer chickens using next-generation sequencing (NGS). Sci Rep 6: 24519.
Vasserman Y, Eliahoo D, Hemsani E (2004) The influence of reovirus sigma C protein diversity on vaccination efficiency. Avian Dis 47: 28-30
Vindevogel H, Meulemans G, Pastoret PP (1982) Reovirus infection in the pigeon. Ann Rech Vet Rinaires Ann Vet Res 13: 149.
Yun T, Chen H, Yu B (2015) Development and application of an indirect ELISA for the detection of antibodies to novel duck reovirus. Journal of Virological Methods 220: 55-59.
Go to article

Authors and Affiliations

H. Liu
1 2 3
ORCID: ORCID
Z. Wei
1 2 3
J. Yang
1 2 3
Y. Wang
1 2 3
ORCID: ORCID
J. Hu
1 2 3
Y. Tang
1 2 3
Y. Diao
1 2 3

  1. College of Veterinary Medicine, Shandong Agricultural University, No.61 Daizong Street, Tai’an 271018, China
  2. Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No.61 Daizong Street, Tai’an 271018, China
  3. Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No.61 Daizong Street, Tai’an 271018, China

This page uses 'cookies'. Learn more