Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

For the manufacture of near net shape complex titanium products, it is necessary to use investment casting process. Melting of titanium is promising to carry out by electron beam casting technology, which allows for specific processing of the melt, and accordingly control the structure and properties of castings of titanium alloys. However, the casting of titanium in ceramic molds is usually accompanied by a reaction of the melt with the mold. In this regard, the aim of the work was to study the interaction of titanium melt with ceramics of shell molds in the conditions of electron beam casting technology. Ceramic molds were made by using the following refractory materials – fused corundum Al2O3, zircon ZrSiO4 and yttria-stabilized zirconium oxide ZrO2, and ethyl silicate as a binder. Melting and casting of CP titanium was performed in an electron beam foundry. Samples were made from the obtained castings and electron microscopic metallography was performed. The presence and morphology of the altered structure, on the sample surface, were evaluated and the degree and nature of their interaction were determined. It was found that the molds with face layers of zirconium oxide (Z1) and zircon (ZS1) and backup layers of corundum showed the smallest interaction with the titanium melt. Corundum interacts with titanium to form a non-continuous reaction layer with thickness of 400-500 μm. For shell molds with face and backup layers of zircon on the surface of the castings, a reaction layer with thickness of 500-600 μm is formed. In addition, zirconium-silicon eutectic was detected in these layers.
Go to article

Bibliography

[1] Agripa, H. & Botef, I. (2019). Modern Production Methods for Titanium Alloys: A Review. In Maciej Motyka (Eds.) Titanium Alloys – Novel Aspects of Their Manufacturing and Processing (pp. 1-14). UK: IntechOpen. DOI: 10.5772/intechopen.81712.
[2] Cviker, U. (1979). Titan i ego splavy. Moskow: Metallurgija, 512. (in Russian).
[3] Il'in, A.A., Kolachev, B.A., Pol'kin, I.S. (2009). Titanovye splavy: Sostav, struktura, svojstva. Spravochnik. Moskva: VILS-MATI, 520. (in Russian).
[4] Banerjee, D. & Williams, J.C. (2013). Perspectives on titanium science and technology. Acta Materialia. 6(3), 844- 879. DOI: 10.1016/j.actamat.2012.10.043.
[5] Saha, R. L., Jacob, K.T. (1986). Casting of titanium and its alloys. Defense science journal. 36(2), 121-141.
[6] Suzuki, K. (2001). An Introduction to the extraction, melting and casting technologies of titanium alloys. Metals and Materials International. 7(6), 587-604. DOI: 10.1007/BF03179258.
[7] Cen, M. J., Liu, Y., Chen, X., Zhang, H.W. & Li, Y.X. (2019). Inclusions in melting process of titanium and titanium alloys. China Foundry. 16(4), 223-231. DOI: 10.1007/s41230-019- 9046-1.
[8] Smalcerz, A., Blacha, L. & Łabaj, J. (2021). Aluminium loss during Ti-Al-X alloy smelting using the VIM technology. Archives of Foundry Engineering. 21(1), 11-17. DOI: 10.24425/afe.2021.136072.
[9] Paton, B.E., Trigub, N.P., Ahonin, S.V., Zhuk, G.V. (2006). Jelektronno-luchevaja plavka titana. Kyiv: Naukova dumka, 248. (in Russian).
[10] Ladohin, S.V. (Ed.). (2007). Jelektronno-luchevaja plavka v litejnom proizvodstve. Kyiv: Stal', 626. (in Russian).
[11] Ladohin, S.V., Levickij, N.I., Lapshuk, T.V., Drozd, E.A., Matviec, E.A. & Voron, M.M. (2015). Primenenie jelektronno-luchevoj plavki dlja poluchenija izdelij medicinskogo naznachenija. Metal and Casting of Ukraine. 4, 7-11. (in Russian).
[12] Voron, M.M., Drozd, E.A., Matviec, E.A. & Suhenko, V.Ju. (2018). Vlijanie temperatury litejnoj formy na strukturu i svojstva otlivok titanovogo splava VT6 jelektronno-luchevoj viplavki. Metal and Casting of Ukraine. 1-2, 40-44. (in Russian).
[13] Voron, M.M., Levytskyi, M.I. & Lapshuk, T.V. (2015). Structure and properties of lytic alloys of Ti-Al-V electronvariable smelting system. Metaloznavstvo ta obrobka metaliv. 2, 29-37. (in Ukrainian).
[14] Levickij, N.I., Ladohin, S.V., Miroshnichenko, V.I., Matviec, E.A. & Lapshuk T.V. (2008). Ispol'zovanie metallicheskih form dlja poluchenija slitkov i otlivok iz titanovyh splavov pri jelektronno-luchevoj garnisazhnoj plavke. Metal and Casting of Ukraine. 7-8, 50-52. (in Russian).
[15] Nikitchenko, M.N., Semukov, A.S., Saulin, D.V. & Jaburov, A.Ju. (2017). Izuchenie termodinamicheskoj vozmozhnosti vzaimodejstvija materialov lit'evoj formy s metallom pri lit'e titanovyh splavov. Vestnik Permskogo nacional'nogo issledovatel'skogo politehnicheskogo universiteta. Himicheskaja tehnologija i biotehnologija. 4, 249-263. (in Russian).
[16] Altindis, M., Hagemann, K., Polaczek, A.B. & Krupp, U. (2011). Investigation of the Effects of Different Types of Investments on the Alpha‐Case Layer of Ti6Al7Nb Castings. Advanced Engineering Materials. 13(4), 319-324. DOI: 10.1002/adem.201000264.
[17] Chamorro, X., Herrero-Dorca, N., Rodríguez, P. P., Andrés, U. & Azpilgain, Z. (2017). α-Case formation in Ti-6Al-4V investment casting using ZrSiO4 and Al2O3 moulds. Journal of Materials Processing Technology. 243, 75-81. DOI: 10.1016/j.jmatprotec.2016.12.007.
[18] Neto, R.L., Duarte, T.P., Alves, J.L. & Barrigana, T.G. (2017). The influence of face coat material on reactivity and fluidity of the Ti6Al4V and TiAl alloys during investment casting. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 231(1-2), 38-48. DOI: 10.1177/1464420716681824.
[19] Saulin, D., Poylov, V., Uglev, N. (2020). Effusion Mechanism of α-Layer Formation in Vacuum Casting of Titanium Alloys. IOP Conference Series: Materials Science and Engineering. 969, 012060, 1-12. DOI: 10.1088/1757- 899X/969/1/012060.
[20] Uwanyuze, S., Kanyo, J., Myrick, S. & Schafföner, S. (2021). A review on alpha case formation and modeling of mass transfer during investment casting of titanium alloys. Journal of Alloys and Compounds. 865, June 2021, 158558, 1-19. DOI: 10.1016/j.jallcom.2020.158558
[21] Guilin, Y., Nan, L., Yousheng, L., Yining, W. (2007). The effects of different types of investments on the alpha-case layer of titanium castings. The Journal of prosthetic dentistry. 97(3), 157-164. DOI: 10.1016/j.prosdent.2007.01.005
[22] Kim, M.G., Kim, S.K. & Kim, Y.J. (2002). Effect of mold material and binder on metal-mold interfacial reaction for investment castings of titanium alloys. Materials Transactions. 43(4), 745-750. DOI: 10.2320/ matertrans.43.745.
[23] Sun, S.C., Zhao, E.T., Hu, C., Yu, J.R., An, Y.K. & Guan, R.G. (2020). Characteristics of interfacial reactions between Ti-6Al-4V alloy and ZrO2 ceramic mold. China Foundry. 17(6), 409-415. DOI: 10.1007/s41230-020-0106-3.
[24] Farsani, M.A. & Gholamipour, R. (2020). Silica-Free Zirconia-Based Primary Slurry for Titanium Investment Casting. International Journal of Metalcasting. 14(1), 92-97. DOI: 10.1007/s40962-019-00335-y.
[25] Bańkowski, D. & Spadło, S. (2020). Research on the Influence of Vibratory Machining on Titanium Alloys Properties. Archives of Foundry Engineering. 20(3), 47-52. DOI: 10.24425/afe.2020.133329.
Go to article

Authors and Affiliations

Pavlo Kaliuzhnyi
M. Voron
1
O. Mykhnian
1
A. Tymoshenko
1
O. Neima
1
O. Iangol
1

  1. Physico-Technological Institute of Metals and Alloys of the National Academy of Sciences of Ukraine, Ukraine

This page uses 'cookies'. Learn more