Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Thermal error always exists in a machine tool and accounts for a large part of the total error in the machine. Thermal displacement in X-axis on a CNC lathe is controlled based on a rapid heating system. Positive Temperature Coefficient (PTC) heating plates are installed on the X-axis of the machine. A control temperature system is constructed for rapid heating which further helps the thermal displacement to quickly reach stability. The system then continuously maintains stable compensation of the thermal error. The presented rapid heating technique is simpler than the compensation of machine thermal errors by interference in the numerical control system. Results show that the steady state of the thermal displacement in the X-axis can be acquired in a shorter time. In addition, almost all thermal errors in constant and varying working conditions could be significantly reduced, by above 80% and 60%, respectively, compared to those without using the rapid heating. Therefore, the proposed method has a high potential for application on the CNC lathe machine for improving its precision.
Go to article

Bibliography

[1] J. Bryan. International status of thermal error research. CIRP Annals, 39(2):645–656, 1990. doi: 10.1016/S0007-8506(07)63001-7.
[2] J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Alkan Donmez, W. Knapp, F. Härtig, et al. Thermal issues in machine tools. CIRP Annals, 61(2):771–791, 2012. doi: 10.1016/j.cirp.2012.05.008.
[3] H. Wang, F. Li, Y. Cai, Y. Liu, and Y. Yang. Experimental and theoretical analysis of ball screw under thermal effect. Tribology International, 152:106503, 2020. doi: 10.1016/j.triboint.2020.106503.
[4] C. Jin, B. Wu, and Y. Hu. Heat generation modeling of ball bearing based on internal load distribution. Tribology International, 45(1):8–15, 2012. doi: 10.1016/j.triboint.2011.08.019.
[5] J. Liu, C. Ma, S. Wang, S. Wang, B. Yang, and H. Shi. Thermal boundary condition optimization of ball screw feed drive system based on response surface analysis. Mechanical Systems and Signal Processing, 121:471–495, 2019. doi: 10.1016/j.ymssp.2018.11.042.
[6] C.-H. Wu and Y.-T. Kung. Thermal analysis for the feed drive system of a CNC machine center. International Journal of Machine Tools and Manufacture, 43(15):1521–1528, 2003. doi: 10.1016/j.ijmachtools.2003.08.008.
[7] H. Shi, C. Ma, J. Yang, L. Zhao, X. Mei, and G. Gong. Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools. International Journal of Machine Tools and Manufacture, 97:60–71, 2015. doi: 10.1016/j.ijmachtools.2015.07.003.
[8] W.S. Yun, S.K. Kim, and D.W. Cho. Thermal error analysis for a CNC lathe feed drive system. International Journal of Machine Tools and Manufacture, 39:1087–1101, 1999. doi: 10.1016/S0890-6955(98)00073-X.
[9] H. Shi, B. He, Y. Yue, C. Min, and X. Mei. Cooling effect and temperature regulation of oil cooling system for ball screw feed drive system of precision machine tool. Applied Thermal Engineering, 161:114150, 2019. doi: 10.1016/j.applthermaleng.2019.114150.
[10] Z.Z. Xu, X.J. Liu, H.K. Kim, J.H. Shin, and S.K. Lyu. Thermal error forecast and performance evaluation for an air-cooling ball screw system. International Journal of Machine Tools and Manufacture, 51(7-8):605–611, 2011. doi: 10.1016/j.ijmachtools.2011.04.001.
[11] S.-C. Huang. Analysis of a model to forecast thermal deformation of ball screw feed drive systems. International Journal of Machine Tools and Manufacture, 35,(8):1099–1104, 1995. doi: 10.1016/0890-6955(95)90404-A.
[12] T.-J. Li, J.-H. Yuan, Y.-M. Zhang, and C.-Y. Zhao. Time-varying reliability prediction modeling of positioning accuracy influenced by frictional heat of ball-screw systems for CNC machine tools. Precision Engineering, 64:147–156, 2020. doi: 10.1016/j.precisioneng.2020.04.002.
[13] C. Ma, J. Liu, and S. Wang. Thermal error compensation of linear axis with fixed-fixed installation. International Journal of Mechanical Sciences, 175:105531, 2020. doi: 10.1016/j.ijmecsci.2020.105531.
[14] J. Zapłata and M. Pajor. Piecewise compensation of thermal errors of a ball screw driven CNC axis. Precision Engineering, 60:160–166, 2019. doi: 10.1016/j.precisioneng.2019.07.011.
[15] W. Feng, Z. Li, Q. Gu, and J. Yang. Thermally induced positioning error modelling and compensation based on thermal characteristic analysis. International Journal of Machine Tools and Manufacture, 93:26–36, 2015. doi: 10.1016/j.ijmachtools.2015.03.006.
[16] H. Zhou, P. Hu, H. Tan, J. Chen, and G. Liu. Modelling and compensation of thermal deformation for machine tool based on the real-time data of the CNC system. Procedia Manufacturing, 26:1137–1146, 2018. doi: 10.1016/j.promfg.2018.07.150.
[17] A.A. Kendoush. An approximate solution of the convective heat transfer from an isothermal rotating cylinder. International Journal of Heat and Fluid Flow, 17(4):439–441, 1996. doi: 10.1016/0142-727X(95)00002-8.
[18] T.L. Bergman, F.P. Incropera, D.P. DeWitt, and A.S. Lavine. Fundamentals of Heat and Mass Transfer. 7th edition, John Wiley & Sons, 2011.
[19] Z. Li, K. Fan, J. Yang, and Y. Zhang. Time-varying positioning error modeling and compensation for ball screw systems based on simulation and experimental analysis. The International Journal of Advanced Manufacturing Technology, 73:773–782, 2014. doi: 10.1007/s00170-014-5865-9.
[20] J.G. Yang, Y.Q. Ren, and Z.C. Du. An application of real-time error compensation on an NC twin-spindle lathe. Journal of Materials Processing Technology, 129(1-3):474–479, 2002. doi: 10.1016/S0924-0136(02)00618-0.
Go to article

Authors and Affiliations

Van-The Than
1
ORCID: ORCID
Chi-Chang Wang
2
Thi-Thao Ngo
1
Guan-Liang Guo
2

  1. Faculty of Mechanical Engineering, Hung Yen University of Technology and Education, Khoai Chau District, Hung Yen Province, Vietnam
  2. Department of Mechanical and Computer-Adided Engineering, Feng Chia University, Taichung, Taiwan, R.O.C.

This page uses 'cookies'. Learn more