Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Compared with traditional cellular networks, wireless ad hoc networks do not have trusted entities such as routers, since every node in the network is expected to participate in the routing function. Therefore, routing protocols need to be specifically designed for wireless ad hoc networks. In this work, we propose an authenticated routing protocol based on small world model (ARSW). With the idea originating from the small world theory, the operation of the protocol we proposed is simple and flexible. Our simulation results show the proposed ARSW not only increases packet delivery ratio, but also reduces packet delivery delay. In particularly, Using authentication theory, the proposed ARSW improves communication security.
Go to article

Bibliography

[1] Elizabeth M. Royer, Chai-Keong Toh. A review of current routing protocols for ad-hoc mobile wireless networks. IEEE Personal Communications, 6(2): 46-55, 1999.
[2] Jorge E. O. T., Molina J. L. B., Miguel A. S. L. Simulation and evaluation of ad hoc networks under different mobility models. Ingeniería E Investigación, 23(3): 44-50, 2003.
[3] Tianbo L., Hao C. Anonymous routing protocols for mobile ad-hoc networks. International Journal of Security and its Applications, 10(4): 229-240, 2016.
[4] Banala R., Sakthivel M. A review on delay-minimized routing protocol in mobile cognitive ad hoc networks. International Journal of Computer Sciences & Engineering, 6(7): 991-996, 2018.
[5] Prabhavat S. , Narongkhachavana W. , Thongthavorn T. , et al. Low Overhead Localized Routing in Mobile Ad Hoc Networks. Wireless Communications & Mobile Computing, 2019, 6(4): 1-15.
[6] Shanmugasundaram D. , Shanavas A. R. M. Avoidance Cosmic Dust implementing in Ad Hoc on-demand Distance Vector (CDA AODV) Routing Protocol [J]. International Journal of Computer Sciences & Engineering, 2019, 7(4): 995-1005.
[7] Kothandaraman D., Chellappan C., . Energy Efficient Node Rank-Based Routing Algorithm in Mobile Ad-Hoc Networks. International Journal of Computer Networks & Communications, 2019, 11(1):45-61.
[8] Shanmugasundaram D., Shanavas A. R. M. . Avoidance Cosmic Dust implementing in Ad Hoc on-demand Distance Vector (CDA AODV) Routing Protocol. International Journal of Computer Sciences & Engineering, 2019, 7(4):995-1005.
[9] Kim, C., Talipov, E., & Ahn, B. A reverse aodv routing protocol in ad hoc mobile networks. Lecture Notes in Computer Science, pp. 522-531. 2016.
[10] Navjot K., Ashok K., & Daviet J. (2011). Comparison and analysis of RREQ and RREP for dynamic wireless network. Indian Journal of Computer Science & Engineering, 2(3), 73-78, 2011.
[11] Kargl F., Schlott S. & Weber M. (2004). Securing ad hoc routing protocols, Proceedings. 30th Euromicro Conference, 2004., Rennes, France, pp. 514-519.
[12] Kumar S., Dhull K., Sharma D., et al. Evaluation of AODV and DYMO Routing Protocol using Generic, Micaz and Micamotes Energy Conservation Models in AWSN with Static and Mobile Scenario [J]. Scalable Computing, 2019, 20(4):653-661.
[13] Watts D.J. & Strogatz S.H. (1998), Collective dynamics of ‘small-world’ networks, Nature, 1998, 393(6684): 440–442.
[14] Qin Y , Guo D , Luo L , et al. Design and optimization of VLC based small-world data centers [J]. Frontiers of Computer Science in China, 2019, 13(5):1034-1047.
[15] Qiu T.p, Liu X., Li K., et al. Community-Aware Data Propagation with Small World Feature for Internet of Vehicles [J]. IEEE Communications Magazine, 2018, 56(1):86-91.
[16] Reka A., Hawoong J., & Albert-Laszlo B. Error and attack tolerance of complex networks. Nature. 406(6794):378-382, 2004.
[17] Guidoni, D. L. , Mini, R. A. F. , & Loureiro, A. A. F. On the design of resilient heterogeneous wireless sensor networks based on small world concepts. Computer Networks, 54(8):1266-1281, 2009.
[18] Zhang, J. & Elkashlan M., A small world network model for energy efficient wireless networks, IEEE Communication. Lett., 17(10): 1928–1931, 2013.
[19] Zarepour, M., Universal and non-universal neural dynamics on small world connectomes: A finite-size scaling analysis. Physical Review E. 100 (5): 52138, 2019.
[20] Tefan G. Small directed strongly regular graphs. Algebra Colloquium, 27(1), 11-30, 2020.
[21] Zhang L. & Tang Y. Research on the method of improving network security based on small world model. 40(13):136-139, 2005.
[22] Oscar P. Sarmiento, F. G. Guerrero, D. R.(2008) Basic security measures for IEEE 802.11 wireless networks. Ingenieria E Investigación, 28(2):89-96. 2008.
[23] Wu J. &Yang S. Logarithmic Store-Carry-Forward Routing in Mobile Ad Hoc Networks. IEEE Trans. on Parallel and Distributed Systems, 18(6): 735-748, 2007.
[24] Anhong Zhong. Research on Mobile Ad Hoc Network Routing Protocol Based on Small World Theory [D]. Xidian University, 2011.
[25] Li Yong, Li Wei, Zhao Weiquan, Optimization for Dynamic Source Routing Based on the Small-world Theory [J], Computer Engineering, 2005 (9):102-104.
Go to article

Authors and Affiliations

Daxing Wang
1
Leying Xu
1

  1. College of Mathematics and Finance, Chuzhou University

This page uses 'cookies'. Learn more