Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The neutral point clamped (NPC) three-level grid-tied converter is the key equipment connecting renewable energy and power grids. The current sensor fault caused by harsh environment may lead to the split of renewable energy. The existing sensor fault-tolerant methods will reduce the modulation ratio index of the converter system. To ensure continuous operation of the converter system and improve the modulation index, a model predictive control method based on reconstructed current is proposed in this paper. According to the relationship between fault phase current and a voltage vector, the original voltage vector is combined and classified. To maintain the stable operation of the converter and improve the utilization rate of DC voltage, two kinds of fault phase current are reconstructed with DC current, normal phase current and predicted current, respectively. Based on reconstructed three-phase current, a current predictive control model is designed, and a model predictive control method is proposed. The proposed method selects the optimal voltage vector with the cost function and reduces time delay with the current reconstruction sector. The simulation and experimental results showthat the proposed strategy can keep the NPC converter running stably with one AC sensor, and the modulation index is increased from 57.7% to 100%.
Go to article

Authors and Affiliations

Yanyan Li
1
ORCID: ORCID
Han Xiao
1
Nan Jin
1
ORCID: ORCID
Guanglu Yang
1 2

  1. College of Electrical and Information Engineering, Zhengzhou University of Light Industry, China
  2. Nanyang Cigarette Factory, China Tobacco Henan Industrial Co., Ltd., China

This page uses 'cookies'. Learn more