Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Self compacting concrete (SCC) filling layer is core structure of China rail track system (CRTS) ? type ballastless track. Construction quality, service performance and durability of CRTS ? ballastless structure are affected by stability of SCC for filling layer. In this study, the stability of SCC of filling layer is researched at three levels as paste, mortar and concrete by theory and experiment. Evaluation indices including bleeding (��), surface bubble rate (��), thickness of paste (��paste) and thickness of surface mortar (��) are proposed based on the theoretical calculation and analysis. The threshold viscosity of paste 0.394 Pa·s and mixture satisfied area are obtained at paste level based on the relationship between viscosity and ��, �� of paste. The mixture satisfied area was defined at mortar level under criterions of maximum value of ��paste and slump flow. Optimal range of gap between neighboring aggregates (��ca) 12.4 mm~14.1 mm is chosen by flow ability, passing ability, stable ability of SCC. These research results will help to further understand the stability of SCC.
Go to article

Authors and Affiliations

He Liu
1
ORCID: ORCID
Jingyi Zhang
2
ORCID: ORCID
Yanhai Yang
1
ORCID: ORCID

  1. Shenyang Jianzhu University, School of Transportation and Geometics Engineering, No. 25 Hunnan Zhong Road, Hunnan District, 110168 Shenyang, China
  2. Shenyang Urban Construction University, School of Civil Engineering, No.380 Bai Ta Road, Hunnan District, 110167 Shenyang, China
Download PDF Download RIS Download Bibtex

Abstract

The paste content in the self-compacting concrete is about 40% in unit volume. The rheological properties of paste directly determine the properties of self-compacting concrete. In this paper, the effect of silica fume (2, 3, 4, and 5%), limestone powder (5, 10 and 15%), and the viscosity modified admixture (2, 3, 4, 5, 6, and 7%) on the rheological properties were investigated. The effect of admixtures on shear thickening response was discussed based on the modified Bingham model. The results indicate that yield stress and plastic viscosity increased with increased silica fume and viscosity modified admixture replacement. The paste’s yield stress increases and then decreases with limestone powder replacement. The critical shear stress and minimum plastic viscosity are improved by silica fume and viscosity modifying admixture. The critical shear stress first increases and decreases as the limestone powder replacement increases. A reduction in the shear thickening response of paste was observed with silica fume and viscosity modified admixture replacement increase.
Go to article

Authors and Affiliations

He Liu
1
ORCID: ORCID
Guangchao Duan
1
ORCID: ORCID
Jingyi Zhang
2
ORCID: ORCID
Yanhai Yang
1
ORCID: ORCID

  1. Shenyang Jianzhu University, School of Transportation and Geometics Engineering, No. 25 Hunnan Zhong Road, Hunnan District, 110168 Shenyang, China
  2. Shenyang Urban Construction University, School of Civil Engineering, No. 380 Bai Ta Road, Hunnan District, 110167 Shenyang, China

This page uses 'cookies'. Learn more