Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Geopolymer is formed from the alkali activation of materials rich in Si and Al content with the addition of a silicate solution to enhance the properties of the materials. This paper presents research on the mechanical properties of fly ash-based geopolymer filler in epoxy resin by varying different solid to liquid ratios using sodium hydroxide and sodium silicate as the alkaline activator. However, the common problem observed from the solid to liquid ratio is the influence of curing time and compressive strength of geopolymer to have the best mechanical property. The mix design for geopolymers of solid to liquid ratio is essential in developing the geopolymer’s mechanical strength. A series of epoxy filled with fly ash-based geopolymer materials with different solid to liquid ratio, which is prepared from 0.5 to 2.5 solid to liquid ratio of alkaline activator. The tensile strength and flexural strength of the epoxy filled with fly ash-based geopolymer materials is determined using Universal Testing Machine under tensile and flexural mode. It was found that the optimum solid to liquid ratio is 2.0, with the optimum tensile and flexural strength value. However, both the tensile and flexural properties of epoxy filled with fly ash-based geopolymer suddenly decrease at a 2.5 solid to liquid ratio. The strength is increasing with the increasing solid to liquid ratio sample of geopolymer filler content.
Go to article

Authors and Affiliations

Mohammad Firdaus Abu Hashim
1 2
ORCID: ORCID
Che Mohd Ruzaidi Ghazali
1 3
ORCID: ORCID
Yusrina Mat Daud
1 4
ORCID: ORCID
Meor Ahmad Faris
1 2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 4
ORCID: ORCID
Farah Farhana Zainal
1 4
ORCID: ORCID
Saloma Hasyim
5
ORCID: ORCID
Muhammad Taqiyuddin Lokman
2

  1. Universiti Malaysia Perlis, Center of Excellence Geopolymer & Green Technology (CEGeoGTech), School of Materials Engineering, (UniMAP), 02600 Jalan Kangar-Arau, Perlis, Malaysia
  2. Universiti Malaysia Perlis, (UniMAP), Faculty of Mechanical Engineering Technology, Perlis, Malaysia
  3. Universiti Malaysia Terengganu, Faculty of Ocean Engineering Technology and Informatic, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia
  4. Universiti Malaysia Perlis, (UniMAP), Faculty of Chemical Engineering Technology, 02600 Jalan Kangar-Arau, Perlis, Malaysia
  5. Sriwijaya University, Civil Engineering Department, Faculty of Engineering, Indonesia

This page uses 'cookies'. Learn more