Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Data

Wyniki wyszukiwania

Wyników: 1
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

The coarse-grained heat-affected zone specimens of X80 pipeline steel were produced by welding thermal simulation under different heat inputs of 10, 30, and 55 kJ/cm to study the effects of heat input on microstructure evolution and corrosion characterization. The corrosion resistance of coarse-grained heat-affected zones was poorer than that of base metal due to less homogenous in the former. For 10 kJ/cm coarse-grained heat-affected zone, the corrosion resistance was poorer than the others due to the more adsorption hydrogen around the needle-like martensite/austenite constituents and greater galvanic driving force between the needle-like martensite/austenite constituents and ferrite. In carbonate/bicarbonate solution, better corrosion resistance for coarse-grained heat-affected zones was obtained when the heat input is 30 kJ/cm, which can be attributed to the severe coarse martensite/austenite constituents for 55 kJ/cm coarse-grained heat-affected zone. In the H2S environment, the better corrosion resistance for coarse-grained heat-affected zone was obtained when the heat input is 55 kJ/cm, which can be attributed to the protective effect of corrosion products. In addition, the high content of M/A constituents for 30 kJ/cm CGHAZ was good for hydrogen adsorption, which was adverse to the corrosion resistance in acid environments.
Przejdź do artykułu

Autorzy i Afiliacje

Xue-Mei Wang
1 2
ORCID: ORCID
Wei Zhao
1 2 3
ORCID: ORCID
Kai Chen
1 2
ORCID: ORCID
Zhen Li
1 2
ORCID: ORCID

  1. Qilu University of Technology (Shandong Academy of Sciences), School of Mechanical & Automotive Engineering, China
  2. Shandong Institute of Mechanical Design and Research, China
  3. School of Materials Science and Engineering, Tianjin University, China

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji