Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the correlation between the CRI (Coke Reactivity Index), CSR (Coke Strength after Reaction) and the remaining 36 quality parameters of coking coal from the Pniówek deposit (SW part of the USCB). The test results were obtained for a region of fundamental importance to the Polish reserves of coking coal, characterized by highly variable coalification and quality parameters. The tests related to the determination of relationships of the CRI and CSR indices to other parameters were based on 25 channel samples acquired from active workings. The characteristics of the variability of the CRI and CSR indices were analyzed using statistical methods. The dependencies between the CRI and CSR indices and the parameters having an impact on their values were determined using linear correlation. An attempt was also made to determine the correlations between the concerned parameters using the multiple correlation method. The obtained results have been presented and compared to the results of globally conducted experiments in the form of charts presented by (North et al. 2018b). No clear dependence of the CRI and CSR indices was exhibited in case of most of the analyzed quality parameters, which is supported by low correlation coefficients of r < 0.5. The statistical analysis exhibited only 9 cases of correlation between CRI and CSR with other quality parameters, where the correlation coefficient was r ≥ 0.5, that is: Ht a, Na2O, Al2O3 and SiO2, Mn3O4, da a and dr a. This confirms the different characteristics of coal from the studied area, exhibited multiple times, that should be related to the specific coalification process, especially the occurrence of thermal metamorphism.

Go to article

Authors and Affiliations

Krystian Probierz
Marek Marcisz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Bibliography


[1] G. I. Taylor, Plastic strain in metals, J. Inst. Metals 62, 307 (1938).

[2] G. Sachs, Zur abteilung einer fleissbedingung, Zeit. Der V.DJ. 72, 739 (1928).

[3] P. Van Houtte, On the equivalence of the relaxed Taylor theory and the Bishop Hill theory for partially constrained plastic deformation of crystals, Mat. Sci. Engng 55, 69 (1982).

[4] G. R. Canova, C. N. Tome, U. F. Kock s, J. J. Jonas, The yield surface of textured polycrystals, J. Mech., Phys. Solids 33, 371 (1985). 183

[5] E. Kroner, Zur plastichen verformung des vielkristalls, Acta Metali 9, 155 (1961).

[6] R. Hill, Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids 13, 89 (1965).

[7] J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. A241, 376 (1957).

[8] B. Budiansky, T. T. Wu, Theoretical prediction of plastic strains of polycrystals, Proc., 4th US Nat. Cong. of Applied Mech., 1175 (1962).

[9] J. W. Hutchinson, Plastic stress-strain relations of FCC polycrystalline metals hardening according to Taylor rule, J. Mech. Phys. Solids 12, 1 l (1964).

[10] J. W. Hutchinson, Plastic deformation of BCC polycrystals, J. Mech. Phys. Solids 12, 25 (1964).

[11] M. Berveiller, A. Zaoui, An extention of the self-consistent scheme to plastically flowing polycrystals, J. Mech. Phys. Solids 26, 325 (1979).

[12] T. Iwakuma, S. Nemat-Nasser, Finite elastic-plastic deformation of polycrystalline metals, Proc. R. Soc. Lond. A394, 87 (1984).

[13] P. Li piński, M. Berveiller, Elastoplasticity of micro-inhomogeneous metals at large strains, Int. J. of Plasticity 5, 149 (1989).

[14] P. Lipiński, Modćlisation du comportement des rnćtaux, en transformations ćlastoplastiques finies, ,l partir des methodes de transition d'echelles, Habilitation, University of Metz (1993).

[15] P. Lipiński, J. Krier, M. Berveiller, Elastoplasticite des metaux en grandes transformations: comportement global et evolution de la structure interne, Rev. Phys. Appliquće 25, 361 (1990).

[16] P. Lipiński, A. Naddari, M. Berveiller, Recent results concerning the modelling of polycrystalline plasticity at large strains, Int. J. Solids Structures 29, 1873 (1992).

[17] K. Wierzbanowski, Some results of a theoretical study of plastic deformation and texture formation in polycrystals, Scientific Bulletins of St. Staszic University of Mining and Metallurgy, No 1132, Phys. Bull. 12 (1987).

[18] M. Berveiller, A. Zaoui, Methode self-consistente en mćcanique des solides hćtćrogeness. 15emc Collogue du Groupe Franęais de Rheologie, Paris, France, 175 (1980).

[19] P. Zattarin, A. Carmasol, P. Lipiński, Une nouvelle approche numerique pour calculer les interactions entre deux inclusions dans un milieu anistrope, Compt. Rend. 3•rne congres de mecanique, SMSM, Maroc, 845 (1997).

[20] A. Baczmański, K. Wierzbanowski, J. Tarasiuk, M. Ceretti, A. Lodini, Anisotropy of Micro-Stresses Measured by Diffraction, Rev. de Metali. 94, 1467 (1997).

[21] A. Baczmański, K. Wierzbanowski, J. Tarasiuk, Models of Plastic Deformation Used for Internal Stress Measurements, Z. Metallkd. 86, 507 (1995).

[22] T. Leffers, Phys. Stat. Sol. 25, 337 (1968).

[23] T. Leffers, A. Kinematic Model for the Plastic Deformation of Face-Centred Cubic Polycrystal Riso Report No 302, Danish Atomic Energy Commission, Riso, Denmark (1975).

[24] K. Wierzbanowski, Z. Jasieński, Some Comments on Sachs and Taylor Type Deformation, Scripta Met 15, 585 (1981 ).

[25] K. Wierzbanowski, J. Jura, W. G. Haije, R. B. Helmholdt, FCC Rolling Texture Transitions in Relation to Constraint Relaxation, Cryst. Res. Techno!. 27, 513 (1992).

[26] E. Kroner, Kontinuumstheorie der Versetzungen and Eigenspannungen, Berlin, Springer-Verlag (1958).

[27] J. F. Nye, Physical properties of crystals, Clarendon, Press Oxford (1957).

[28] L. P. Kubin, G. Canova, The modelling of dislocation patterns, Scripta Metali Mater. 27, 957 (1992).

[29] P. Franciosi, M. Berveiller, A. Zaoui, Latent hardening in copper and aluminium single crystals, Acta Met 28, 273 (1980).

[30] Ch. Schmitt, P. Lipiński, M. Berveiller, Micromechanical modelling of the elastoplastic behaviour of polycrystals containing precipitates. Application to hypo and hyper eutectoid steels, Int. J. Plasticity 13, 183 (1997).

[31] R. Hill, On the elasticity and stability of perfect crystals at finite strain, Math. Proc. Camb. Phil. Soc. 77, 225 (1975).

[32] O. Fassi-Fehri, Le probleme de la paire d'inclusions plastiques et hetćrogenes dans une matrice anisotrope, Ph. D. Thesis, University of Metz (1985).

Go to article

Authors and Affiliations

Patric Zattarin
Andrzej Baczmański
Paweł Lipiński
Krzysztof Wierzbanowski

This page uses 'cookies'. Learn more