Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Keywords
  • Date
  • Typ

Wyniki wyszukiwania

Wyników: 5
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

The implementation of a sustainable development concept that involves an improvement of resource use efficiency, whilst maximizing the utilization of locally available biomass resources, has contributed to an increased interest in the combined heat and power systems based on externally fired gas turbines. Since the high-temperature gas/gas heat exchangers intended to heat the turbine inlet air are the key components of such systems, intensified research on exchangers of this type has been observed over the last decade. This work presents the in-house calculation code developed to analyze the heat transfer between the hot-side and cold-side streams in the small-scale red-hot air furnace of a unique design. The performed calculations, based on the assumed thermal and flow operation parameters and technical specifications, allowed to determine the required heat exchange surface area of the furnace to achieve the target outlet conditions. The calculation code allows for determining the geometry of a furnace, including its overall dimensions, number of tubes, and their bent sections in the heat exchange parts. The study of the laboratory-scale furnace performance has demonstrated its good agreement with the simulation results, thereby proving the code a reliable tool in designing.
Przejdź do artykułu

Autorzy i Afiliacje

Sylwia Polesek-Karczewska
1
Dariusz Kardaś
1
Izabela Wardach-Święcicka
1

  1. Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The aim of this study was to determine how the change of glass laminate fibres to flax fibres will affect the stability of thin-walled angle columns. Numerical analyses were conducted by the finite element method. Short L-shaped columns with different configurations of reinforcing fibres and geometric parameters were tested. The axially compressed structures were simply supported on both ends. The lowest two bifurcation loads and their corresponding eigenmodes were determined. Several configurations of unidirectional fibre arrangement were tested. Moreover, the influence of a flange width change by ±100% and a column length change by ±33% on the bifurcation load of the compressed structure was determined. It was found that glass laminate could be successfully replaced with a bio-laminate with flax fibres. Similar results were obtained for both materials. For the same configuration of fibre arrangement, the flax laminate showed a lower sensitivity to the change in flange width than the glass material. However, the flax laminate column showed a greater sensitivity to changes in length than the glass laminate one. In a follow-up study, selected configurations will be tested experimentally.
Przejdź do artykułu

Bibliografia

[1] S.V. Joshi, L.T. Drzal, A.K Mohanty, and S. Arora. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3):371–376, 2004. doi: 10.1016/j.compositesa.2003.09.016.
[2] P. Wambua, J. Ivens .and I.Verpoest. Natural fibers: can they replace glass in fiber reinforced plastics? Composites Science and Technology, 63(9):1259–1264, 2003. doi: 10.1016/S0266-3538(03)00096-4.
[3] D.B. Dittenber and H.V.S. GangaRao. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing, 43(8):1419–1429, 2012. doi: 10.1016/j.compositesa.2011.11.019.
[4] A. Stamboulis, C.A. Baillie, and T. Peijs. Effects of environmental conditions on mechanical and physical properties of flax fibers. Composites Part A: Applied Science and Manufacturing, 32(8):1105–1115, 2001. doi: 10.1016/S1359-835X(01)00032-X.
[5] L. Pil, F. Bensadoun, J. Pariset, and I. Verpoest. Why are designers fascinated by flax and hemp fiber composites? Composites Part A: Applied Science and Manufacturing, 83:193–205, 2016. doi: 10.1016/j.compositesa.2015.11.004.
[6] H.Y. Cheung, M.P. Ho, K.T. Lau, F. Cardona, And D. Hui. Natural fiber-reinforced composites for bioengineering and environmental engineering applications. Composites Part B: Engineering, 40(7):655–663, 2009. doi: 10.1016/j.compositesb.2009.04.014.
[7] M.I. Misnon, Md M. Islam, J.A. Epaarachchi, and K.T. Lau. Potentiality of utilising natural textile materials for engineering composites applications. Materials & Design, 59:359–368, 2014. doi: 10.1016/j.matdes.2014.03.022.
[8] T. Gurunathan, S. Mohanty, and S.K. Nayak. A review of the recent developments in biocomposites based on natural fibers and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77:1–25, 2015. doi: 10.1016/j.compositesa.2015.06.007.
[9] H.L. Bos, M.J.A. Van Den Oever, and O.C.J.J. Peters. Tensile and compressive properties of flax fibers for natural fiber reinforced composites. Journal of Materials Science, 37:1683–1692, 2002. doi: 10.1023/A:1014925621252.
[10] C. Baley. Analysis of the flax fibers tensile behavior and analysis of the tensile stiffness increase. Composites Part A: Applied Science and Manufacturing, 33(7):939–948, 2002. doi: 10.1016/S1359-835X(02)00040-4.
[11] C. Baley, M. Gomina, J. Breard, A. Bourmaud, and P. Davies. Variability of mechanical properties of flax fibers for composite reinforcement. A review. Industrial Crops and Products, 145:111984, 2020. doi: 10.1016/j.indcrop.2019.111984.
[12] I. El Sawi, H. Bougherara, R. Zitoune, and Z. Fawaz. Influence of the manufacturing process on the mechanical properties of flax/epoxy composites. J ournal of Biobased Materials and Bioenergy, 8(1):69–76, 2014. doi: 10.1166/jbmb.2014.1410.
[13] K. Strohrmann and M. Hajek. Bilinear approach to tensile properties of flax composites in finite element analyses. Journal of Materials Science, 54:1409–1421, 2019. doi: 10.1007/s10853-018-2912-1.
[14] Z. Mahboob, Y. Chemisky, F. Meraghni, and H. Bougherara. Mesoscale modelling of tensile response and damage evolution in natural fiber reinforced laminates. Composites Part B: Engineering, 119:168–183, 2017. doi: 10.1016/j.compositesb.2017.03.018.
[15] Z. Mahboob, I. El Sawi, R. Zdera, Z. Fawaz, and H. Bougherara. Tensile and compressive damaged response in Flax fiber reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 92:118–133, 2017. doi: 10.1016/j.compositesa.2016.11.007.
[16] C. Nicolinco, Z. Mahboob, Y. Chemisky, F. Meraghni, D. Oguamanam, and H. Bougherara. Prediction of the compressive damage response of flax-reinforced laminates using a mesoscale framework. Composites Part A: Applied Science and Manufacturing, 140:106153, 2021. doi: 10.1016/j.compositesa.2020.106153.
[17] R.T. Durai Prabhakaran, H. Teftegaard, C.M. Markussen, and B. Madsen. Experimental and theoretical assessment of flexural properties of hybrid natural fiber composites. Acta Mechanica, 225:2775–2782, 2014. doi: 10.1007/s00707-014-1210-5.
[18] M. Fehri, A. Vivet, F. Dammak, M. Haddar, and C. Keller. A characterization of the damage process under buckling load in composite reinforced by flax fibers. Journal of Composites Science, 4(3):85, 2020. doi: 10.3390/jcs4030085.
[19] V. Gopalan, V. Suthenthiraveerappa, J.S. David, J. Subramanian,A.R. Annamalai, and C.P. Jen. Experimental and numerical analyses on the buckling characteristics of woven flax/epoxy laminated composite plate under axial compression. Polymers, 13(7):995, 2021. doi: 10.3390/polym13070995.
[20] J. Gawryluk and A. Teter. Experimental-numerical studies on the first-ply failure analysis of real, thin-walled laminated angle columns subjected to uniform shortening. Composite Structures, 269:114046, 2021. doi: 10.1016/j.compstruct.2021.114046.
[21] J. Gawryluk. Impact of boundary conditions on the behavior of thin-walled laminated angle column under uniform shortening. Materials, 14(11):2732, 2021. doi: 10.3390/ma14112732.
[22] J. Gawryluk. Post-buckling and limit states of a thin-walled laminated angle column under uniform shortening. Engineering Failure Analysis, 139:106485, 2022. doi: 10.1016/j.engfailanal.2022.106485.
[23] ABAQUS 2020 HTML Documentation, DassaultSystemes.
[24] T. Kubiak and L. Kaczmarek, Estimation of load-carrying capacity for thin-walled composite beams. Composite Structures, 119:749–756, 2015. doi: 10.1016/j.compstruct.2014.09.059.
[25] T. Kubiak, S. Samborski, and A. Teter. Experimental investigation of failure process in compressed channel-section GFRP laminate columns assisted with the acoustic emission method. Composite Structures, 133:921–929, 2015. doi: 10.1016/j.compstruct.2015.08.023.
[26] M. Urbaniak, A. Teter, and T. Kubiak. Influence of boundary conditions on the critical and failure load in the GFPR channel cross-section columns subjected to compression. Composite Structures, 134:199–208, 2015. doi: 10.1016/j.compstruct.2015.08.076.
[27] A. Teter and Z. Kolakowski. On using load-axial shortening plots to determine the approximate buckling load of short, real angle columns under compression. Composite Structures, 212:175–183, 2019. doi: 10.1016/j.compstruct.2019.01.009.
[28] A. Teter, Z. Kolakowski, and J. Jankowski. How to determine a value of the bifurcation shortening of real thin-walled laminated columns subjected to uniform compression? Composite Structures, 247, 12430, 2020 doi: 10.1016/j.compstruct.2020.112430.
Przejdź do artykułu

Autorzy i Afiliacje

Jarosław Gawryluk
1
ORCID: ORCID

  1. Department of Applied Mechanics, Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland

Abstrakt

Przemysłowe urządzenia realizujące przeróbkę materiałów ziarnistych w warunkach wysokoenergetycznej warstwy fluidalnej pozwalają uzyskać gwarantowane uziarnienie produktu, przy jednoczesnym zmniejszeniu energochłonności procesu.W części IV artykułu zaprezentowano macierzowy model ewolucji składu ziarnowego materiału w młynie strumieniowo-fluidyzacyjnym. Proponowany model oparty na równaniu bilansu masowego populacji ziaren składa się z trzech macierzy blokowych: macierzy całego układu M, macierzy wejść (nadawy bądź produktu) stopni układu F i macierzy nadawy całego układu F0. W omawianym przypadku w macierzy blokowej M występują: macierz jednostkowa I, macierz zerowa 0, macierz przejścia P i dwie macierze klasyfikacji C. Macierz przejścia wyznaczono, bazując na dyskretnych postaciach funkcji selekcji i funkcji rozdrabniania, zaś macierze klasyfikacji - wykorzystując równanie, opisujące klasyfikację ziaren w komorze mielenia młyna. W pracy podano model (punkt 2.1), potwierdzono poprawność przyjętych dyskretnych postaci funkcji selekcji i funkcji rozdrabniania oraz przedstawiono sposób wyznaczenia macierzy przejścia dla fluidalnego mielenia ziaren (punkt 2.2), a także macierzy klasyfikacji grawitacyjnej i odśrodkowej ziaren (punkt 2.3). Weryfikacje modelu uzyskano opierając się na wynikach z badań eksperymentalnych, które przeprowadzono na laboratoryjnym stanowisku młyna strumieniowo-fluidyzacyjnego. Eksperyment obejmował mielenie wybranych klas ziarnowych kamienia wapiennego w warunkach burzliwej warstwy fluidalnej, co przedstawiono w części I i II artykułu (Zbroński, Górecka-Zbrońska 2007a, b). Parametrami identyfikacji były: współczynnik proporcjonalności - występujący w równaniu dyskretnej postaci funkcji selekcji oraz rozmiary ziaren granicznych - występujące w równaniu na diagonale elementy macierzy klasyfikacji dla stopnia grawitacyjnego i stopnia odśrodkowego (punkt 3). Do oceny statystycznej prognozowania uziarnienia produktu mielenia zastosowano klasyczny test Fishera- Snedecora (punkt 4). Potwierdzono brak istotnych rozbieżności między oznaczeniami składu ziarnowego numerycznego i eksperymentalnego. Przeprowadzona weryfikacja eksperymentalna, identyfikacja parametryczna i ocena statystyczna modelu dowodzi, że możliwe jest adekwatne prognozowanie składu ziarnowego produktu mielenia strumieniowo-fluidalnego.

Przejdź do artykułu

Autorzy i Afiliacje

Daniel Zbroński

Abstrakt

Głównym celem artykułu jest rekonstrukcja ujęcia wieloznaczności przedstawionego w pracy Tadeusza Pawłowskiego Tworzenie pojęć w naukach humanistycznych (1986) oraz systematyzacja i analiza tej propozycji. Ze względu na to, że Pawłowski był uczniem Tadeusza i Janiny Kotarbińskich oraz zajmował się kwestiami metodologicz-nymi dotyczącymi języka nauki (i naukowo rozumianej filozofii), tłem rozważań jest tradycja Szkoły Lwowsko-Warszawskiej. W artykule zostają sformułowane pewne uwagi dotyczące koncepcji Pawłowskiego, jak również kilka innych obserwacji na temat zjawiska wieloznaczności.
Przejdź do artykułu

Autorzy i Afiliacje

Alicja Chybińska
1
ORCID: ORCID

  1. Uniwersytet Warszawski, Wydział Filozofii, ul. Krakowskie Przedmieście 3, 00-927 Warszawa
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

W artykule omawiam modalną wersję tzw. argumentu z konsekwencji za inkompatybilizmem. Przedstawiam najczęściej pojawiające się w literaturze uwagi krytyczne i staram się na nie odpowiedzieć. Główna strategia podważania argumentu polega na wynajdywaniu takich sensów użytych w nim wyrażeń, przy których przesłanki okazują się fałszywe, konkluzja nie dość mocna, reguły niepoprawne. Kwestionuję tę strategię i twierdzę, że argument z konsekwencji należy uznać za poprawny. Jest on bardzo mocną racją za prawdziwością inkompatybilizmu.
Przejdź do artykułu

Bibliografia

Beebee H. (2013), Free Will. An Introduction, Basingstoke: Palgrave Macmillan.
Beebee H., Mele A. (2002), Humean Compatibilism, „Mind” 111, s. 201–223.
Campbell J.K. (2007), Free Will and the Necessity of the Past, „Analysis” 67, s. 105– 111.
Campbell J.K. (2010), Compatibilism and Fatalism: Reply to Loss, „Analysis” 70, s. 71–76.
Ginet C. (1966), Might We Have No Choice?, w: K. Lehrer (red.), Freedom and Determinism, New York: Random House, s. 87–104.
Grobler A. (2006), Metodologia nauk, Kraków: Aureus – Znak.
Huemer M. (2000), Van Inwagen’s Consequence Argument, „The Philosophical Review” 109, s. 525–544.
Kane R. (2007), Libertarianism, w: J.M. Fischer, R. Kane, D. Pereboom, M. Vargas, Four Views on Free Will, Oxford: Blackwell Publishing, s. 5–43.
Lewis D. (1979), Counterfactual Dependence and Time’s Arrow, „Nous” 13, s. 455– 476.
Lewis D. (1981), Are We Free to Break the Laws?, „Theoria” 3, s. 113–121.
McKay T.J., Johnson D. (1996), A Reconsideration of An Argument Against Compatibilism, „Philosophical Topics” 24, s. 113–122.
Speak D. (2012), The Consequence Argument Revisited, w: R. Kane (red.), The Oxford Handbook of Free Will, Oxford Handbooks Online, www.oxfordhandbooks.com.
Van Inwagen P. (1975), The Incompatibility of Free Will and Determinism, „Philosophical Studies” 27, s. 185–199.
Van Inwagen P. (1983), An Essay on Free Will, Oxford: Clarendon Press. Van Inwagen P. (2000), Free Will Remains a Mystery, „Philosophical Perspectives” 14, s. 1–19.
Vihvelin K. (2000), Libertarian Compatibilism, „Philosophical Perspectives” 14, s. 139–166.
Warfield T.A. (2000), Causal Determinism and Human Freedom are Incompatible: A New Argument for Incompatibilism, „Philosophical Perspectives” 14, s. 167–180.
Przejdź do artykułu

Autorzy i Afiliacje

Andrzej Nowakowski
1

  1. Uniwersytet Marii Curie‑Skłodowskiej w Lublinie, Wydział Filozofii i Socjologii, Pl. M. Curie‑Skłodowskiej 4, 20‑031 Lublin

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji