Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Insulin receptor substrate 2 (IRS-2) modulates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which controls the suppression of gluconeogenic genes; IRS-2 is also a critical node of insulin signaling. Because of the high homology between pig and human IRS-2, we investigated the expression pattern and function of porcine IRS-2. QPCR and immunoblotting were used to detect the IRS-2 expression level in different tissues. There were high IRS-2 levels in the cerebral cortex, hypothalamus, and cerebellum in the central nervous system. In peripheral tissues, IRS-2 was expressed at relatively high levels in the liver. Immunohistochemistry analysis revealed that IRS-2 was mainly distributed in the hypothalamus and cerebral cortex. Furthermore, IRS-2 knockdown porcine hepatocytes and porcine aortic endothelial cells (PAECs) were generated. The IRS-2 knockdown induced abnormal expression of genes involved in glycolipid metabolism in hepatocytes and reduced the antiatherosclerosis ability in PAECs. In addition, we disrupted IRS-2 in porcine embryonic fibroblasts (PEFs) using the CRISPR/Cas9 genome editing system, before finally generating IRS-2 knockout embryos by somatic cell nuclear transfer (SCNT). Taken together, our results indicate that IRS-2 might be a valuable target to establish diabetes and vascular disease models in the pig.

Go to article

Authors and Affiliations

Z. Yin
M. Cai
X. Weng
Z. Liu
G. Zhang
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, fiber stacks are extensively used in the aircraft and structural component manufacturing industries. It is mainly due to their excellent mechanical and physiochemical performances. The different stacking sequences of fiber materials expand the structural properties due to high-strength carbon fiber and low-cost glass fiber. The fragile and anisotropic conduct of Carbon (Cf) and Glass (Gf) laminates generates different types of complex machining issues. This article focuses on the Drilling test of Carbon/glass fiber hybrid composites using different stacking sequences. The effect of varying stacking orders is explored in this study to identify a feasible composite. The control of varying constraints, namely, spindle speed (N), feed rate (f ), and stacking sequence (SS) of carbon (Cf) and glass fiber (Gf) reinforcement, is performed to achieve the optimal parametric condition. The finding reveals that sample A (C4G4) stacking sequence provides an acceptable value for thrust force 59.05 N and delamination 1.0001 for high drilling efficiency. The stacking technique of carbon/glass layers can be endorsed to the manufacturing sector for cost-effective composite development and a defect-free machining environment.
Go to article

Authors and Affiliations

A.D. Dubey
1
J. Kumar
2
P. Kyratsis
3
R.K. Verma
4

  1. Madan Mohan Malaviya University of Technology, Department of Mechanical Engineering, Gorakhpur, 273010, India
  2. NIMS University Rajasthan, Nims Institute of Engineering and Technology, Department of Mechanical and Aerospac e Engineering, Jaipur, Rajasthan, 303121, India
  3. University of Western Macedonia, Department of Product and Systems Design Engineering, 50100, Greece
  4. School of Engineering, Harcourt Butler Technical University, Department of Mechanical Engineering, Kanpur, 208002, India

This page uses 'cookies'. Learn more