Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Tungsten Inert Gas (TIG) welding processes one of the prevalent methods used for welding aluminum alloys. TIG welding is most commonly used due to its superiority in welding less dense materials. The most prevalent issues encountered with TIG welding aluminium alloys are porosity creation and cracking due to solidification, both of which result in lower mechanical properties. Because of the metal’s susceptibility to heat input, this occurs. The current work is the result of a desire to improve the mechanical properties of dissimilar aluminium metals: AA5052-H32 & AA5083-H111. The process parameters of TIG welding are optimized towards eliminating the previously discussed failure scenarios. Various optimization techniques exist towards obtaining optimizing processes such as Response Surface Methodology (RSM), Genetic Algorithm (GA), Artificial Neutral Network (ANN), Flower pollination algorithm, Taguchi method etc, The Taguchi method was chosen for the optimization of process parameters due to its inherent nature of solving problems of singular variance. The optimal parameters combination was determined i.e. welding current at 170 A, filler rod diameter 2.4 mm and Gas flow rate of 11 lpm. The optimized input parameter was used to TIG weld the confirmation specimen which are further investigated for mechanical and metallurgical characterizations. The parameters were optimized and the results indicate that the input current was found to be the most contributing towards improving mechanical properties over all the process parameters.
Go to article

Authors and Affiliations

D. Antony Prabu
1
ORCID: ORCID
K.S. Jayakumar
2
ORCID: ORCID
E. Madhavan Pillai
1
ORCID: ORCID
G. Kumaresan
3
ORCID: ORCID

  1. LOYOLA-ICAM College of Engineering and Technology (LICET), Department of Mechanical Engineering, Loyola Campus, Chennai, Tamil Nadu, India
  2. Sri Sivasubramaniya Nadar College of Engineering, Department of Mechanical Engineering, Chennai, Tamil Nadu, India
  3. Bannari Amman Institute of Technology, Department of Mechanical Engineering, Sathyamangalam, Erode, Tamil Nadu, India
Download PDF Download RIS Download Bibtex

Abstract

3D printing is a technology used on an ever-increasing scale, which makes it easier to obtain parts with complex geometry. The printing process is very complex because, in addition to the variables introduced by the various materials that are used, there is a multitude of process parameters: printing direction, layer thickness, infill level, filament feed rate, printing temperature, printing bed temperature, etc. Each process parameter influences the mechanical properties of the 3D-printed structure, which is why it is necessary to define the range of possible values where the effect is maximum. In this paper it was studied the effect of process parameters variation on the roughness and mechanical properties of the 3D-printed samples. Using a commercially PLA filament (produced by Prussia), we made six sets of 3D-printed samples, using six different overflow (OF) values: 90%, 95%, 100%, 105%, 110%, 115%. The test samples (realized according to ISO 572-2) were subjected to tensile tests on an Instron 3382 machine, and the results were interpreted comparatively. It has been observed that there are variations of the mechanical properties, dependent on the chosen values of the overflow and, in addition, this process parameter has an important role for the achieving the desired structure.
Go to article

Authors and Affiliations

M. Axinte
1
D.L. Chicet
1
ORCID: ORCID
R. Chelariu
1
ORCID: ORCID
R.I. Comăneci
1

  1. Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, Blvd. Mangeron, No. 41, 700050, Iasi, Romania

This page uses 'cookies'. Learn more