Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Catalytic reforming is an important intermediate in the processing of crude (naphtha in particular) to obtain gasoline. The catalyst used in the process (platinum) is quite expensive and may negatively impact the business if not used judiciously. The aforesaid not only refers to the reduction in loss of the catalyst per unit of gasoline produced but also to the manufacturing of an environmentally friendlier product alongside which is the need of the planet and also a necessity to meet the increasingly strict government norms. In order to meet the above requirements, various refineries around the world use various well-known conventional methods which depend on the quality and quantity of crude manufactured by them.
This paper focuses on highlighting recent advancements in methods of catalytic regeneration (CR) in the reforming unit of petroleum industries to produce high octane gasoline, without any major replacements in their existing setup. Research papers formulated by the application of methodologies involving non-linear models and real-time refinery data have only been considered to avoid any deviations/errors in practical applications. In-depth analysis of these papers has led to the origin of some ideas which have been included as suggestions and can be considered as subjects of further research. In all, the objective of the paper is to serve as a reference for researchers and engineers working on devising optimum methods to improve the regeneration of reforming catalysts.
Go to article

Authors and Affiliations

Aviral Gupta
1
S.K. Gupta
1

  1. Harcourt Butler Technical University, Department of Chemical Engineering, Kanpur-208002, India
Download PDF Download RIS Download Bibtex

Abstract

The configuration of the smart irrigation system was designed on the basis of data specific to the parameters concerning characteristics of the plant and the pedological properties of the local soil (permeability, pH, humidity, porosity, etc.), including the meteorological factors. In the Chlef area, the water availability is dependent on meteorological data. The objective of this work is to estimate irrigation water needs in crop gardening (potato) based on a smart irrigation system (SIS). Thus, to ensure an equilibrated growth of crops, we have developed a system with parameters, such as soil moisture and soil temperature, which are the input variables of this smart irrigation system. This system was applied for the irrigation of potatoes (‘Bartina’ variety), planted in the agricultural experimental station of Lard El Beida at Chlef. The results obtained in terms of production yield led to a conclusion that the smart irrigation system allows achieving production of 124.83% with lower water consumption (–19.31%), compared to that of a drip irrigation system. Moreover, the granulometric analysis of the potato tuber size showed that 80.83% of the production is within the size range between 30 mm and 55 mm. By comparison, we observed that 77.4% of products obtained from drip irrigation follow a uniform distribution. We conclude that this smart irrigation system is very economical in terms of water use for gardening crops. Given these encouraging results, it would be wiser to generalize its application and implement it to guarantee food self-sufficiency in the water-deficient regions.
Go to article

Authors and Affiliations

Mohammed Amoura
1
ORCID: ORCID
Mustapha Douani
1
ORCID: ORCID
Toufik Tahri
2
ORCID: ORCID

  1. Hassiba Benbouali University of Chlef, Faculty of Technology, Laboratory of Vegetal Chemistry-Water-Energy, Algeria
  2. Hassiba Benbouali University of Chlef, Faculty of Technology, Laboratory of Electrical Engineering and Renewable Energy LGEER, Route nationale No. 19, 2000, Chlef, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The soil microbiome is exposed to technogenic influence during the operation of metal structures. There are quantitative and qualitative changes in the microbiota of the technogenic ecosystem. During the study of the technogenic soil ecosystem (ferrosphere), samples of which were taken in the field (Chernihiv, Ukraine: 51°29’58”N, 31°16’09”E), the presence of corrosively active microbial cenosis was established: sulfate-reducing, denitrifying, iron-reducing (using acetate as the only electron donor, and Fe (III) as the only electron acceptor) and ammonifying bacteria. The predominant representatives of corrosively active groups of bacteria were isolated. They were identified as Bacillus simplex, Streptomyces gardneri, Streptomyces canus (ammonifying bacteria), Fictibacillus sp. (ammonifying bacteria with iron-reducing ability), Anaerotignum (Clostridium) propionicum (organic acid-producing bacteria), Desulfovibrio oryzae (sulfate-reducing bacteria) based on some microbiological, physiological and biochemical, genetic features. Strains of heterotrophic and hemolitotrophic bacteria (individual representatives and their associations) isolated from the technogenic ecosystem can be used in both industrial and technological spheres. The interaction of isolated bacteria in the process of microbial induced corrosion is a prospect for further research.
Go to article

Bibliography

Abdulina, D.R., Asaulenko, L.G., Purish, L.M., 2011. Dissemination of corrosive aggressive bacteria in soils of different biotopes (Rozpovsiudzhennia koroziino-ahresyvnykh bakterii u gruntakh riznykh biotopiv). Studia Biologica 5 (1), 11–16. (in Ukrainian).

Agrawal, A., Vanbroekhoven, K., Lal, B., 2010. Diversity of culturable sulfidogenic bacteria in two oil-water separation tanks in the north-eastern oil fields of India. Anaerobe 16 (1), 12–18.

Ait-Langomazino, N., Sellier, R., Jonquet, G., Trescinski, M., 1991. Microbial degradation of bitumen. Experientia 6, 533–539.

AlAbbas, F.M., Williamson, Ch., Bhola, Sh.M., Spear, J.R., Olson, D.L., Mishra, B., Kakpovbia, A.E., 2013. Microbial Corrosion in Linepipe Steel Under the Influence of a Sulfate-Reducing Consortium Isolated from an Oil Field. Journal of Materials Engineering and Performance 22 (11), 3517–3529.

Amann, R.J., Stromley, J., Devereux, R., Key, R., Stahl, D.A., 1992. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Applied and Environmental Microbiology 58, 614–623.

Andreyuk, E.I., Kozlova, I.A., Kopteva, Zh.P., Pilyashenko-Novokhatny, A.I., Zanina, V.V., Purish, L.M., 2002. Ferrosphere – formation zone corrosive community of microorganisms (Ferrosfera – zona formirovaniya korrozionno-aktivnogo soobschestva mikroorganizmov). Reports of the NAS of Ukraine 3, 157–161. (in Russian)

Andreyuk, K., Kozlova, I., Koptieva, Zh., Pilyashenko-Novokhatny, A., Zanina, V., Purish, L., 2005. Microbial Corrosion of Underground Structures, Naukova Dumka, Kyiv. (in Ukrainian with English summary).

Antonovskaya, N.S., Kozlova, I.A., Andreyuk, E.I., 1986. Thiobacillus thioparus – active agent in steel corrosion. Mikrobiologii Zhurnal 1, 36–41. (in Russian with English summary)

Aseeva, I.V., Babieva, I.P., Byzov, B.A., Goosev, V.S., Dobrovolskaya, T.G., Zvyagintsev, D.G., Zenova, G.M., Kozhevin, P.A., Kurakov, A.V., Lysak, L.V., Marfenina, O.E., Mirchink, T.G., Polyanskaya, L.M., Panikov, N.S., Skvortsova, I.N., Stepanov, A.L., Umarov, M.M., 1991. Methods of soil microbiology and biochemistry (Metodyi pochvennoy mikrobiologii i biohimii). In: Zvyagintsev, D.G. (Ed.), Moscow University Press, Moscow. (in Russian).

Bala, D.D., Chidambaram, D., 2014. Effect of anaerobic microbial corrosion on the surface film formed on steel. ECS Transactions 58 (41), 137–149.

Bano, A.Sh., Qazі, J.I., 2011. Soil Buried Mild Steel Corrosion by Bacillus cereus-SNB4 and its Inhibition by Bacillus thuringiensis- SN8. Pakistan Journal of Zoology 43 (3), 555–562.

Bergey’s Manual of Systematic Bacteriology, 2005. Second Edition, Volume 2, The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria.Brenner, D.J., Krieg, N.R., Staley, J.T. et al., Springer, New York.

Bergey’s Manual of Systematic Bacteriology, 2009. Second edition, Volume 3, The Firmicutes. De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.-H., Whitman, W.B. Springer, New York.

Bergey’s Manual of Systematic Bacteriology, 2012. Second edition, Volume 5, The Actinobacteria, Part A. Goodfellow, M., Kämpfer, P., Busse, H.-J., Trujillo, M.E., Suzuki, K.-I., Ludwig, W., Whitman, W.B. Springer, New York.

Beech, I.B., Gaylarde, Ch.C., 1999. Recent advances in the study of biocorrosion: an overview. Revista de Microbiologia 30 (3), 117– 190.

Bermont-Bouis, D., Janvier, M., Grimont, P.A., Dupont, I., Vallaeys, T., 2007. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel. Journal of Applied Microbiology 102, 161–168.

Bleich, R., Watrous, J.D., Dorrestein, P.C., Bowers, A.A., Shank, E.A., 2015. Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis. Proceedings of the National Academy of Sciences (PNAS) 112 (10), 3086–3091.

Bolton, N., Critchley, M., Fabien, R., Cromar, N., Fallowfield, H., 2010. Microbially influenced corrosion of galvanized steel pipes in aerobic water systems. Journal of Applied Microbiology 109, 239–247.

Bragadeeswaran,S., Jeevapriya, R., Prabhu, K., Sophia Rani, S., Priyadharsini, S., Balasubramanian, T., 2011. Exopolysaccharide production by Bacillus cereus GU812900, a fouling marine bacterium. African Journal of Microbiology Research 5 (24), 4124–4132.

Capão, A., Moreira-Filho, P., Garcia, M., Bitati, S., Luciano Procópio, L., 2020. Marine bacterial community analysis on 316L stainless steel coupons by Illumina MiSeq sequencing. Biotechnology Letters 42, 1431–1448.

Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., Lappin- Scott, H.M. Microbial Biofilms, 1995. Annual Review of Microbiology 49, 711–745.

Du, J., Li, S., Liu, J., Yu, M., 2014. Corrosion behavior of steel Q235 co-influenced by Thiobacillus thiooxidans and Bacillus. Beijing Hangkong Hangtian Daxue Xuebao. Journal of Beijing University of Aeronautics and Astronautics 40 (1), 31–38.

Duque, Z., Ibars, J.R., Sarró, M.I., Moreno, D.A., 2011. Comparison of sulphide corrosivity of sulphate- and non-sulphate-reducing prokaryotes isolated from oilfield injection water. Materials and Corrosion 62 (9999), 1–7.

Engel, K., Ford, S.E., Coyotzi, S., McKelvie, J., Diomidis, N., Slater, G., Neufeld, J.D., 2019. Stability of Microbial Community Profiles Profiles Associated with Compacted Bentonite from the Grimsel Underground Research Laboratory. mSphere 4 (6) e00601-19. https://doi.org/10.1128/mSphere.00601-19

Giovannoni, S.J., Britschgi, T.B., Moyer, C.L., Field, K.G., 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature, 345, 60–63.

Herro, H.M., Port, R.D., 1993. The Nalco guide to cooling water system failure analysis, 1st ed., McGraw-Hill, New York, pp. 420.

Horn, J., Carrrillo, C., Dias, V., 2003. Comparison of the Microbial Community Composition at Yucca Mountain and Laboratory Test Nuclear Repository Environments. CORROSION ⁄2003 (San Diego, CA, March 16–20, 2003), Paper No. 03556. NACE International, Houston.

Ilhan-Sungur, Е., Ozuolmez, D., Çotuk, A., Cansever, N., Muyzer, G., 2017. Isolation of a sulfide-producing bacterial consortium from coolingtower water: Evaluation of corrosive effects on galvanized steel. Anaerobe 43, 27–34.

James, G.A., Beaudette, L., Costerton, J.W., 1995. Interspecies bacterial interactions in biofilm. The Journal of Industrial Microbiology and Biotechnology 15 (4), 237–262.

Jan-Roblero, J., Romero, J.M., Amaya, M., Le Borgne, S., 2004. Phylogenetic characterization of a corrosive consortium isolated from a sour gas pipeline. Applied Microbiology and Biotechnology 64, 862–867.

Jayaraman, A., Earthman, J.C., Wood, T.K., 1997. Corrosion inhibition by aerobic biofilms on SAE 1018 steel. Applied Microbiology and Biotechnology 47, 62–68.

Lane, D.G., 1991. Nucleic acids techniques in bacterial systematic. In: Stackebrandt, E., Goodfellow, M. (Eds), Nucleic Acid Techniques in Bacterial Systematic, John Wiley and Sons, New York, 115–175.

Lewandowski, Z., 2000. Structure and Function of Biofilms. In: Evans, L.V. (Ed.) Biofilms: Recent Advances in Their Study and Control, 1–17, Harwood Academic Publishers.

Li, X., Duan, J., Xiao, H., Li, Y., Liu, H., Guan, F., Zhai, X., 2017. Analysis of Bacterial Community Composition of Corroded Steel Immersed in Sanya and Xiamen Seawaters in China via Method of Illumina MiSeq Sequencing. Frontiers in microbiology 8, 1737.

Lopez, M.A., Serna, F.J.Z., Jan-Roblero, J., Romero, J.M., Hernandez- Rodriguez, C., 2006. Phylogenetic analysis of a biofilm bacterial population in a water pipeline in the Gulf of Mexico. FEMS Microbiology Ecology 58, 145–154.

Lovley, D.R., Phillips, E.J.P., 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganes, Applied and Environmental Microbiology 54 (6), 1472–1480.

Magot, M., Ravot, G., Campaignolle, X., Ollivier, B., Patel, B.K., Fardeau, M.L., Thomas, P., Crolet, J.L., Garcia, J.L., 1997. Dethiosulfovibrio peptidovorans gen. Nov., sp. Nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. International Journal of Systematic and Evolutionary Microbiology 47, 818–824.

Methods of general bacteriology: in three volumes (Metodyi obschey mikrobiologii), 1984. Gerhardt, F. et al. (Ed.), 3, Mir, Moscow. (in Russian).

Monroy, O.A.R., Gayosso, M.J.H., Ordaz, N.R., Olivares, G.Z., Ramírez, C.J., 2011. Corrosion of API XL 52 steel in presence of Clostridium celerecrescens. Materials and Corrosion 62 (9), 878–883.

Neria-Gonzalez, I., Wang, E.T., Ramirez, F., Romero, J.M., Hernandez- Rodriguez, C., 2006. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe 12, 122–133.

Nnabuk Eddy Okon, 2010. Fermentation product of Streptomyces griseus (albomycin) as a green inhibitor for the corrosion of zinc in H2SO4. Green Chemistry: Letters and Reviews 3 (4), 307–314.

Nuňez, M., 2007. Prevention of metal corrosion: new research. Nova Science Publishers, Inc., New York, pp. 310.

Okabe ,S., Odagiri, M., Ito, T., Satoh, H., 2007. Succession of sulfur- oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Applied and Environmental Microbiology 73, 971–980.

Oliveira, V.M., Lopes-Oliveira, P.F., Passarini, M.R.Z., Menezes, C.B.A., Oliveira, W.R.C., Rocha, A.J., Sette, L.D., 2011. Molecular analysis of microbial diversity in corrosion samples from energy transmission towers. Biofouling 27 (4), 435–447.

Pacheco da Rosa, J., Korenblum, E., Franco-Cirigliano, M.N., Abreu, F., Lins, U., Soares, R.M.A., Macrae, A., Seldin, L., Coelho, R.R.R., 2013. Streptomyces lunalinharesii Strain 235 Shows the Potential to Inhibit Bacteria Involved in Biocorrosion Processes. Hindawi Publishing Corporation BioMed Research International, Article ID 309769.

Pacheco da Rosa, J., Tiburcio, S.R.G., Marques, J.M., Seldin, L., Coelho, R.R.R., 2016. Streptomyces lunalinharesii 235 prevents the formation of a sulfate-reducing bacterial biofilm. Brazilian journal of microbiology 47, 603–609.

Pavissich, J.P., Vargas, I.T., Gonzalez, B., Pasten, P.A., Pizarro, G.E., 2010. Culture dependent and independent analyses of bacterial communities involved in copper plumbing corrosion. Journal of Applied Microbiology 109, 771–782.

Pope, D.H., Duquette, D.J., Johannes, A.H., Wayner, P.C., 1984. Microbially influenced corrosion of industrial alloys. Materials Performance 23 (4), 14–15.

Pilyashenko-Novokhatny, A.I., 2000. Possible distribution of functions between the components of corrosion-hazardous aggregates of microorganisms in the general process of microbially induced corrosion (Mozhlyvyi rozpodil funktsii mizh skladovymy koroziinonebezpechnymy sukupnostiamy mikroorhanizmiv v zahalnomu protsesi mikrobno indukovanoi koroziii). Materials IV International. Conference-exhibitions “Problems of corrosion and anticorrosion. Protection of materials” (Corrosion-200). G.V. Karpenko Physical-Mechanical Institute of the National Academy of Sciences of Ukraine, Lviv. 564–567. (in Ukrainian)

Plohinskij, N.A., 1970. Biometrics (Biometriya). Izdatel’stvo Moskovskogo universiteta, Moskva. (in Russian)

Purish, L.M., Asaulenko, L.G., 2007. Dynamics of succession changes in sulfidogenic microbial association under conditions of biofilm formation on the surface of steel. Mikrobiologii Zhurnal 69 (6), 19‑25. (in Ukrainian with English summary)

Purish, L.M., Asaulenko, L.G., Ostapchuk, A.M., 2009. Features of development of mono- and associative cultures of sulfate-reducing bacteria and formation of exopolymer complex. Mikrobiologii Zhurnal 71 (2), 20–26. (in Ukrainian with English summary)

Qiu, Y.-Y., Guo, J.-H., Zhang, L., Chen, G.-H., Jiang, F., 2017. A highrate sulfidogenic process based on elemental sulfur reduction: cost-effectiveness evaluation and microbial community analysis. Biochemical Engineering Journal 128, 26–32.

Rajasekar, A., Ting, Y.-P., 2010. Microbial Corrosion of Aluminum 2024 Aeronautical Alloy by Hydrocarbon Degrading Bacteria Bacillus cereus ACE4 and Serratia marcescens ACE2. Industrial & Engineering Chemistry Research 49, 6054–6061.

Romanenko, V.I., Kuznetsov, S.I., 1974. Ecology of microorganisms of fresh reservoirs (Ekologiya mikroorganizmov presnyih vodoemov), Nauka, Leningrad. (in Russian).

Salgar-Chaparro, S.J., Darwin, A., Kaksonen, A.H., Machuca, L.L., 2020. Carbon steel corrosion by bacteria from failed seal rings at an offshore facility. Scientific reports 10 (1), 12287. https://doi.org/10.1038/s41598-020-69292-5

Salgar-Chaparro, S.J., Silva-Plata, B.A., 2008. Caracterizacion de la comunidad microbiana residente en aguas de produccion de tres campos de explotacion petrolera, con especial enfasis en grupos asociados a procesos corrosivos. Proyecto. Universidad Industrial de Santander. (in Spanish with English summary)

Satoh, H., Odagiri, M., Ito, T., Okabe, S., 2009. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortor specimens in a corroded sewer system. Water Research 43, 4729–4739.

Stahl, D.A., Lane, D.I., Olsen, G.L., Pace, N.R., 1984. Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science, 224, 409–411.

Su, H., Mi, Sh., Peng, X., Han, Y., 2019. The mutual influence between corrosion and the surrounding soil microbial communities of buried petroleum pipelines. RSC Advances 9, 18930–18940.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30 (12), 2725–2729.

Tkachuk, N., Zelena, L., Mazur, P., Lukash, O., 2020. Genotypic, physiological and biochemical features of Desulfovibrio strains in a sulfidogenic microbial community isolated from the soil of ferrosphere. Ecological questions 31 (2), 79–88.

Tkachuk, N.V., Zelena, L.B., Parmynska, V.S., Yanchenko, V.O., Demchenko, A.M., 2017. Identification of heterotrophic soil ferrosphere bacteria and their sensitivity to the pesticide linuron, Mikrobiologii Zhurnal 9 (4), 75–87. (in Ukrainian with English summary).

Vaschenko, I.M., Lange, K.P., Merkulov, M.P., 1982. Workshop on the basics of rural farming (Praktikum po osnovam selskogo hazyaystva), Prosveschenie, Moskva. (in Russian).

Vincke, E., Boon, N., Verstraete, W., 2001. Analysis of the microbial communities on corroded concrete sewer pipes – a case. Applied Microbiology and Biotechnology 57, 776–785.

Wang, Y.S., Liu, L., Fu, Q., Sun, J., An, Z.Y., Ding, R., Li, Y., Zhao, X.D., 2020. Effect of Bacillus subtilis on corrosion behavior of 10MnNiCrCu steel in marine environment. Scientific Reports 10, 5744. http://dx.doi.org/10.1038/s41598-020-62809-y

Zhu, X., Lubeck, J., Kilbane II J.J., 2003. Characterization of microbial communities in gas industry pipelines. Applied and Environmental Microbiology 69, 5354–5363.
Go to article

Authors and Affiliations

Nataliia Tkachuk
1
Liubov Zelena
2

  1. Department of Biology, T.H. Shevchenko National University “Chernihiv Colehium”, Hetman Polubotok Str. 53, 14013, Chernihiv, Ukraine
  2. Department of Physiology of Industrial Microorganisms, Danylo Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Acad. Zabolotny Str. 154, 03143 Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

In the paper the analysis of random vibration of an actively damped laminated plate with functionally graded piezoelectric actuator layers is presented. The simply supported plate is subjected to stochastic loading represented by a uniformly distributed pressure. The random input is assumed as a Gaussian sta- tionary and ergodic process. The actuators are regarded as a multi-layer structure arranged of piezofiber composite sub-layers. The sub-layers differ each other with amount of PZT (lead-zirconate-titanate) fibers and are stacked to achieve a desired change of the PZT volume fraction through the actuator thickness. The gradation scheme of constituents and material properties are estimated by parabolic and power functions. Numerical simulations are performed to recognize the influence of the applied random excita- tions and the actuator properties gradations on the characteristics of the stochastic field of active plate deflection i.e. power spectral density, autocorrelation function and variance
Go to article

Authors and Affiliations

Marek Pietrzakowski
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the impact of co-firing biomass with coal in boilers on the dew point of the flue gas. Co-firing of biomass may have twofold implications on corrosion and fouling, which are the processes that determine the lowest acceptable flue gas outlet temperature and as a result, boiler efficiency. Both phenomena may be reduced by co-firing of usually low sulphur biomasses or enhanced due to increased moisture content of biomass leading to increased water dew point. The present study concerns the problem of low-temperature corrosion in utility boilers. The paper gives (in the form of diagrams and equations) a relationship between water dew point and moisture content of fuel mixture when co-firing coal and various biomasses. The regression analysis shows that despite significant differences in the characteristics of coals and these of additional fuels, which are planned for co-firing in large-scale power boilers, the water dew point can be described by a function given with the accuracy, which shall be satisfactory for engineering purposes. The discussion of the properties of biofuels indicates that the acid dew point surplus over the water dew point (Δtr = tr - twr) is not likely to exceed 10 K when co-firing biomass. The concluding remarks give recommendations for the appropriate operation of boilers in order to reduce risks associated with biomass co-combustion.

Go to article

Authors and Affiliations

Szymon Ciukaj
Marek Pronobis
Download PDF Download RIS Download Bibtex

Abstract

A lot of beatifcations and canonizations have taken place in recent years. This has led to the publication of life histories, either scientifc or popular in character, of those elevated to the glory of the altars. After 1945 the frst important book was Hagiografa polska (The Polish Hagiography). Another important book was Twoje imię (Your Name) by H. Fros and F. Sowa, republished several times. In his article E. Walewander explains methodological requirements for a hagiographical text which is to be historical in nature, based on historical sources and using methods characteristic of Church history. A similar publication is Sancti. Miracula. Peregrinationes by A. Witkowska, which is a collection of essays on various hagiographical issues. The two-volume edition of Staropolskie piśmiennictwo hagiografczne (The Old Polish Hagiographical Writings) by A. Witkowska and J. Nastalska is a bio-bibliographical dictionary of hagiographers of the pre-partition Poland and a collection of old Polish hagiographical texts. Drogi rozwojowe hagiografi polskiej w wiekach średnich (The Developments of Polish Hagiography in the Middle Ages) by J. Starnawski is a study in the development of Polish writings in the Middle Ages. In the post-war Polish hagiography most publications have been biographical in nature, while there are still not enough methodological and research studies in hagiography of the 19th and 20th c.

Go to article

Authors and Affiliations

O. Roland Prejs OFMCAP
Download PDF Download RIS Download Bibtex

Abstract

The Author presents contemporary Italian views on the theory and history of federalism and regionalism. In particular the concepts of an Italian historian of legal and political thought - Gianfranco Miglio - have been stressed.
Go to article

Authors and Affiliations

Stefan Bielański
ORCID: ORCID

This page uses 'cookies'. Learn more