Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In-situ study on the high-temperature fracture behaviour of 347 stainless steel was carried out by using a confocal laser scanning microscope (CLSM). The welding microstructures of the 347 stainless steel were simulated by subjecting the steel specimen to solution and aging treatments. Undissolved NbC carbides were present within grains after solution treatment, and M23C6 carbides were preferentially formed at grain boundaries after subsequent aging treatment. The M23C6 carbides formed at grain boundaries worked as stress concentration sites and thus generated larger cracks during high-temperature tensile testing. In addition, grain boundary embrittlement was found to be a dominant mechanism for the high-temperature fracture of the 347 stainless steel because vacancy diffusion in the Cr-depleted zones enhances intergranular fracture due to the precipitation of M23C6 carbides at grain boundaries.
Go to article

Bibliography

[1] N . Kim, W. Gil, H. Lim, C. Choi, H. Lee, Met. Mater. Int. 25, 193-206 (2019).
[2] B. Jian, X. Hu, Y. Liu, Mat. Mater. Int. 26, 1295-1305 (2020).
[3] H.P. Kim, D.J. Kim, Corros. Sci. Tech. 17, 183-192 (2018).
[4] Y . Zhou, Y. Li, Y. Liu, Q. Guo, C. Liu, L. Yu, C. Li, H. Li, J. Mater. Res. 30, 3642-3652 (2015).
[5] B. Sasmal, J. Mater. Sci. 32, 5439-5444 (1997).
[6] K . Kaneko, T. Fukunage, K. Yamada, N. Nakada, M. Kikuchi, Z. Saghi, J.S. Barnard, P. A. Midgley, Scr. Mater. 65, 509-512 (2011).
[7] J. Vivas, C. Capdevila, E. Altstadt, M. Houska, I. Sabirov, D.S. Mart, Met. Mater. Int. 25, 343-352 (2019).
[8] H.U. Hong, B.S. Rho, S.W. Nam, J. Mater. Sci. Eng. A. 318, 285- 292 (2001).
[9] S.G. Kim, J.N. Kim, J.P. Wang, C.Y. Kang, Met. Mater. Int. 25, 127-134 (2019).
[10] J.P. Adamson, J.W. Martin, Acta Mater. 19, 1015-1018 (1971)
[11] S.H. Lee, H.S. Na, K.W. Lee, Y. Choe, C.Y. Kang, Metals. 8, 1-14 (2018).
[12] Y .M. He, Y.H. Wang, K. Guo, T.S. Wang, J. Mater. Sci. Eng. A. 708, 248-253 (2017).
[13] S.I. Lee, S.Y. Lee, J. Han, B. Hwang, Mater. Sci. Eng. A. 742, 334-343 (2019).
[14] R . Raj, M.F. Ashby, Metall. Mater. Trans. 2, 1113-1127 (1971).
[15] T.G. Langdon, Acta Metal. Mater. 42, 2437-2443 (1994).
[16] Q. Wu, T. Han, Y. Wang, H. Wang, H. Zhang, S. Gu, Eng. Fail. Anal. 109, 104236 (2020).
[17] E . Merson, V. Danilov, D. Merson, A. Vinogradov, Eng. Fract. Mech. 183, 147-158 (2017).
[18] J. Tian, G. Xu, X. Wan, Mat. Mater. Int. 26, 961-972 (2020).
[19] S.I. Lee, S.Y. Lee, S.G. Lee, H.G. Jung, B. Hwang, Met. Mater. Int. 24, 1221-1231 (2018).
[20] S.Y. Lee, S.I. Lee, B. Hwang, Mater. Sci. Eng. A. 711, 22-28 (2018).
[21] S.I. Lee, J. Lee, B. Hwang, Mater. Sci. Eng. A. 758, 56-59 (2019).
Go to article

Authors and Affiliations

Seok-Woo Ko
1
ORCID: ORCID
Hyeonwoo Park
2
ORCID: ORCID
Il Yoo
3
ORCID: ORCID
Hansoo Kim
2
ORCID: ORCID
Joonho Lee
2
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
  2. Korea University, Department of Materials Science and Engineering, Seoul 02841, Republic of Korea
  3. ADNOC LNG, Abu Dhabi, United Arab Emirates
Download PDF Download RIS Download Bibtex

Abstract

In the past few years, overhead copper transmission lines have been replaced by lightweight aluminum transmission lines to minimize the cost and prevent the sagging of heavier copper transmission lines. High strength aluminum alloys are used as the core of the overhead transmission lines because of the low strength of the conductor line. However, alloying copper with aluminum causes a reduction in electrical conductivity due to the solid solution of each component. Therefore, in this study, the authors attempt to study the effect of various Al/Cu ratios (9:1, 7:3, 5:5) to obtain a high strength Al-Cu alloy without a significant loss in its conductivity through powder metallurgy. Low-temperature extrusion of Al/Cu powder was done at 350ÂșC to minimize the alloying reactions. The as-extruded microstructure was analyzed and various phases (Cu9Al4, CuAl2) were determined. The tensile strength and electrical conductivity of different mixing ratios of Al and Cu powders were studied. The results suggest that the tensile strength of samples is improved considerably while the conductivity falls slightly but lies within the limits of applications.

Go to article

Authors and Affiliations

Deokhyun Han
ORCID: ORCID
Geon-Hong Kim
Jaesung Kim
Byungmin Ahn
ORCID: ORCID

This page uses 'cookies'. Learn more