Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study presents the behavior of a single wall carbon nanotube (SWCNT)/water nanofluid for convective laminar flow inside a straight circular pipe heated by a constant heat flux. Five volume fractions of SWCNT were used to investigate their effect on the heat transfer coefficient, Nusselt number, temperature distribution and velocity field in comparison with pure water flow. One model for each property was tested to calculate the effective thermal conductivity, effective dynamic viscosity, and effective specific heat of the SWCNT/water mixture. The models were extracted from experimental data of a previous work. The outcomes indicate that the rheological behavior of SWCNT introduces a special effect on the SWCNT/water properties, which vary with SWCNT volume fraction. The results show an improvement in the heat transfer coefficient with increasing volume fraction of nanoparticles. The velocity of SWCNT/water nanofluid increased by adding SWCNT nanoparticles, and the maximum increase was registered at 0.05% SWCNT volume fraction. The mixture temperature is increased with the axial distance of the pipe but a reduction in temperature distribution is observed with the increasing SWCNT volume fraction, which reflects the effect of thermophysical properties of the mixture.
Go to article

Authors and Affiliations

Farqad Rasheed Saeed
1
Marwah A. Jasim
2
Natheer B. Mahmood
3
Zahraa M. Jaffar
4

  1. Ministry of Science Technology, Directorate of Materials Research, 55509 Al-Jadriya, Iraq
  2. University of Baghdad, College of Engineering, Al-Jadriya,10074 Al-Jadriya, Iraq
  3. Ministry of Education, General Directorate of Baghdad Education, Karkh 2, 10072 Al-Jadriya, Iraq
  4. Al Nahrain University, College of Science, 10072 Al-Jadriya, Iraq
Download PDF Download RIS Download Bibtex

Abstract

GPR method is perfectly suited for recognizing of sedimentary facies diversity in shallowly occurring sediments if there is a contrast of electrical properties between and/or within each layer. The article deals with the issue of the correlation between GPR surveys results and sedimentological analyses. As a result of this correlation a conceptual model of depositional systems of studied areas was developed. Studies were performed in two areas located in central Poland, where glacial deposits formed in the Middle Polish (Saalian) Glaciation are present. The study was based on 49 sediment samples and 21 GPR profiles. Analyses of lithofacies as well as granulometric and mineralogical composition of deposits of collected samples were carried out, showing the diversity of glacial deposits in both study sites. During GPR measurements shielded antenna with a frequency of 500 MHz was used which allowed high-resolution mapping of the internal structure of deposits and to identify four characteristic radar facies. Correlation of GPR profiles with point, one-dimensional sedimentological studies allowed the unambiguous interpretation of the GPR image and draw conclusions about the formation environment of individual units. Geophysical and sedimentological data obtained during study provide a new and detailed insight into selected glacial deposits in central Poland.

Go to article

Authors and Affiliations

Anna Lejzerowicz
ORCID: ORCID
Anna Wysocka
Sebastian Kowalczyk

This page uses 'cookies'. Learn more