Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The construction of the Keuliling Reservoir aims to accommodate and utilise water for agricultural purposes. In this research, soil erosion modelling using the USLE method showed that the level of erosion hazard for each Keuliling Reservoir sub-watershed was classified into low-moderate. Land erosion occurred in the area around the reservoir inundation is the most significant contribution to the magnitude of erosion (38.62 Mg∙ha–1∙y–1. Based on the point of sediment sampling in the Keuliling reservoir, the sediment volume was 1.43 Mg∙m–3. So, the volumetric sediment input from the Keuliling reservoir watershed is 20.918,32 m3∙y–1. The degradation of reservoir function due to sedimentation can affect reservoir services. The ability to estimate the rate of watershed surface erosion and sediment deposition in the reservoir is vital for reservoir sustainability. Besides the land erosion in the Keuliling Reservoir, there are also other potential sources of erosion that can reduce the capacity of the reservoir, i.e. the rate of sedimentation from a reservoir cliff landslide. The USLE estimation results show that the soil erosion analysis provides important and systematic information about nature, intensity and spatial distribution in the watershed and sediment volume in the Keuliling Reservoir. This finding allows the identification of the most vulnerable areas and the type of erosion dominant for long-term land management.
Go to article

Bibliography

ADEDIJI A., TUKUR A.M., ADEPOJU K.A. 2010. Assessment of Revised Universal Soil Loss Equation (RUSLE) in Katsina Area, Katsina State of Nigeria using Remote Sensing (RS) and Geographic Information System (GIS). Iranian Journal of Energy and Environment. Vol. 1(3) p. 255–264.
ALEXAKIS D.D., HADJIMITSIS D.G., AGAPIOU A. 2013. Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of “Yialias” in Cyprus. Atmospheric Research. Vol. 131 p. 108–124. DOI 10.1016/j.atmosres.2013.02.013.
ARIF A. 2013. Study of erodibility level of several land types in Baturagung Mountains Putat Village and Nglanggeran District Patuk Gunungkidul Regency. Information. Vol. 39. No. 2 p. 15– 31. DOI 10.21831/informasi.v0i2.4441.
ARMIDO A., AZMERI A., FATIMAH E., NURBAITI N., YOLANDA S.N. 2020. The sedimentation datasets of Keuliling Reservoir. Data in Brief. Vol. 32, 106181. DOI 10.1016/j.dib.2020.106181.
ARNOLDUS H.M.J. 1980. An approximation of the rainfall factor in the Universal Soil Loss Equation. In: Assessment of erosion. Eds. M. De Boodt, D. Gabriels. Chichester, UK. Wiley p. 127–132.
ARSYAD S. 2012. Conservation of Land and Water. Second edition. IPB Press, Bogor. ISBN 979-493-003-2 pp. 96. ASDAK C. 2014. Hydrology and watershed management. 3rd edition. Yogyakarta. Gajah Mada University Press. ISBN 979-420-737-3 pp. 625.
AZMERI A., LEGOWO S., REZKYNA N. 2020. Interphase modeling of soil erosion hazard using a Geographic Information System and the Universal Soil Loss Equation. Journal of Chinese Soil and Water Conservation. Vol. 51(2) p. 65–75. DOI 10.29417/JCSWC.202006_51(2).0003.
AZMERI, HADIHARDAJA I.K., VADYA R. 2016. Identificationof flashfloodhazard zones in the small mountainous watershed of Aceh Besar Regency, Aceh Province, Indonesia. The Egyptian Journal of Remote Sensing and Space Sciences. Vol. 19 p. 143–160. DOI 10.1016/j.ejrs.2015.11.001.
BENZER N. 2010. Using the geographical information system and remote sensing techniques for soil erosion assessment. Polish Journal of Environmental Study. Vol. 19(5) p. 881–886.
BISWAS S. 2012. Estimation of soil erosion using remote sensing and GIS and prioritization of catchments. International Journal of Emerging Technology and Advanced Engineering. Vol. 2(7) p. 124–128.
BWS Sumatera I. 2018. Report of Survey and Sedimentation Study of Keuliling Reservoir. Balai Wilayah Sungai Sumatera I. Banda Aceh pp. 181.
CHATTERJEE S., KRISHNA A.P., SHARMA A.P. 2014. Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environmental Earth Sciences. Vol. 71(1) p. 357–374.
DABRAL P.P., BAITHURI N., PANDEY A. 2008. Soil erosion assessment in a hilly catchment of North eastern India using USLE, GIS and remote sensing. Water Resources Management. Vol. 22(12) p. 1783–1798. DOI 10.1007/s11269-008-9253-9.
DEMIRCI A., KARABURUN A. 2012. Estimation of soil erosion using RUSLE in a GIS framework: A case study in the Buyukcekmece Lake watershed, Northwest Turkey. Environmental Earth Sciences. Vol. 66 p. 903–913.
DUTA S. 2016. Soil erosion, sediment yield and sedimentation of reservoir: A review. Modeling Earth Systems and Environment. Vol. 2, 123. DOI 10.1007/2Fs40808-016-0182-y.
DOUCET-BEER E. 2011. Modelling alternative agricultural scenarios using RUSLE and GIS to determine erosion risk in the Chippewa River Watershed, Minnesota [online]. PhD Thesis. University of Michigan pp. 87. [Access 10.03.2021]. Avalable at: http://hdl.handle.net/2027.42/88166.https://deepblue.lib.umich.edu/bit-stream/handle/2027.42/88166/EDoucetBeer_MS_Practicum_F-inal.pdf?sequence=1&isAllowed=y
FU B.J., ZHAO W.W., CHEN L.D., ZHANG Q.J., LU Y.H., GULINCK H., POESEN J. 2005. Assessment of soil erosion at large watershed scale using RUSLE and GIS: A case study in the Loess Plateau of China. Land Degradation & Development. Vol. 16, 7385. DOI 10.1002/ldr.646.
HAREGEWEYN N., POESEN J., NYSSEN J., GOVERS G., VERSTRAETEN G., DECKERS J., MOEYERSONS J., HAILE M., DE VENTE J. 2008. Sediment yield variability in Northern Ethiopia: A quantitative analysis of its controlling factors. Catena. Vol. 75 p. 65–76. DOI 10.1016/j.catena.2008.04.011.
HOYOS N. 2005. Spatial modeling of soil erosion potential in a tropical watershed of the Colombian Andes. Catena. Vol. 63 (1) p. 85–108. DOI https://doi.org/10.1016/j.catena.2005.05.012.
IONUŞ O., BOENGIU S., LICURICI M., POPESCU L., SIMULESCU D. 2013. Mapping soil erosion susceptibility using GIS techniques within the Danube Floodplain, the Calafat – Turnu Măgurele Sector (Romania). Journal of the Geographical Institute “Jovan Cvijic”, SASA 2013. Vol. 63. Iss. 3. Conference Issue: International Conference Natural Hazards – Link between Science and Practice p. 73–82. DOI 10.2298/IJGI1303073I.
ISSA L.K., LECH-HAB K.B.H., RAISSOUNI A., EL ARRIM A. 2016. Cartographie quantitative du risque d’erosion des sols par approche SIG/USLE au niveau dubassin versant Kalaya (Maroc Nord Occidental) [Quantitative mapping of soil erosion risk using GIS/USLE approach at the Kalaya Watershed (North Western Morocco)]. Journal of Materials and Environmental Science. Vol. 7(8) p. 2778–2795.
JIANG B. 2013. GIS-based time series study of soil erosion risk using the Revised Universal Soil Loss Equation (RUSLE) model in a microcatchment on Mount Elgon, Uganda. MSc Thesis. Department of Earth and Ecosystem Sciences Physical Geography and Ecosystems Analysis Lund University, Sweden pp. 51.
KALSUM U., YUNUS Y., FERIJAL T. 2017. Meureudu Watershed Conservation Directive using Geographic Information Systems. Vol. 2. No. 2. p. 423–429.
KAMUJU N. 2016. Soil erosion and sediment yield analysis using prototype & enhanced SATEEC GIS system models. International Journal of Advanced Remote Sensing and GIS. Vol. 5(1) p. 1471– 1482. DOI 10.23953/cloud.ijarsg.39
KIRONOTO B.A. 2003. Sediment Transpor. Civil Engineering Graduate Program UGM, Yogyakarta pp. 100.
KOTHYARI U.C., JAIN S.K. 1997. Sediment yield estimation using GIS. Hydrology Science Journal. Vol. 42 p. 833–843. DOI 10.1080/0262666970949208.
KOURGIALAS N.N., KOUBOURIS G.C., KARATZAS G.P., METZIDAKIS I. 2016. Assessing water erosion in Mediterranean tree crops using GIS techniques and field measurements: The effect of climate change. Natural Hazards. Vol. 83(1) p. 65–81. DOI 10.1007/s11069-016-2354-5.
KURNIA U., SUWARDJO H. 1984. Erosion sensitivity of several soil types in Java according to the USLE Method. Pemberitaan Penelitian Tanah dan Pupuk. No. 3 p. 17–20.
LAL R. 2001. Soil degradation by erosion. Land Degradation and Development. Vol. 12(6) p. 519–539. DOI 10.1002/ldr.472.
LEGOWO S., HADIHARDAJA I.K., AZMERI 2009. Estimation of bank erosion due to reservoir operation in cascade (Case study: Citarum cascade reservoir). ITB ITB Journal of Engineering Science. Vol. 41(2) p. 148–166. DOI 10.5614/itbj.eng.sci.2009.41.2.5
LIM J.K., SAGONG M., ENGEL B.A., TANG Z., CHOI J., KIM K. 2005. GIS based sediment assessment tool. Catena. Vol 64 p. 61–80. DOI 10.1016/J.CATENA.2005.06.013.
MERRITT W.S., LETCHER R.A., JAKEMAN A.J. 2003. A review of erosion and sediment transport models. Environmental Modelling and Software. Vol. 18 p. 761–799. DOI 10.1016/S1364-8152(03)00078-1.
MEUSBURGER K., BÄNNINGER D., ALEWELL C. 2010. Estimating vegeta-tion parameter for soil erosion assessment in an alpine catchment by means of QuickBird imagery. International Journal of Applied Earth Observation and Geoinformation. Vol. 12 p. 201–207. DOI 10.1016/j.jag.2010.02.009.
NAMR K.I., MRABET R. 2004. Influence of agricultural management on chemical quality of a clay soil of semi-arid Morocco. Journal of African Earth Sciences. Vol. 39 p. 485–489. DOI 10.1016/j.jafrearsci.2004.07.016.
PANDEY A., CHOWDARY V.M., MAL B.C. 2007. Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resources Management. Vol. 21(4) p. 729–746. DOI 10.1007/s11269-006-9061-z.
PARK S., OH C., JEON S., JUNG H., CHOI C. 2011. Soil erosion risk in Korean watershed, assessed using Revised Universal Soil Loss Equation. Journal Hydrology. Vol. 399(3–4) p. 263–273. DOI 10.1016/j.jhydrol.2011.01.004.
PEROVIĆ V., ŽIVOTIĆ L., KADOVIĆ R., ĐORĐEVIĆ A., JARAMAZ D., MRVIĆ V., TODOROVIĆ M. 2013. Spatial modelling of soil erosion potential in a mountainous watershed of South-eastern Serbia. Environmental Earth Sciences. Vol. 68 p. 115–128. DOI 10.1007/s12665-012-1720-1.
PRASANNAKUMAR V., VIJITH H., ABINOD S., GEETHA N. 2012. Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geoscience Frontiers. Vol. 3(2) p. 209–215. DOI 10.1016/j.gsf.2011.11.003.
RAHMAN M.R., SHI Z.H., CHONGFA C. 2009. Soil erosion hazard evaluation – An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecological Modelling. Vol. 220. Iss. 13–14 p. 1724–1734. DOI 10.1016/j.ecolmodel.2009.04.004.
SAHU A., BAGHEL T., SINHA M.K., AHMAD I., VERMA M.K. 2017. Soil erosion modeling using Rusle and GIS on Dudhawa catchment. International Journal of Applied Environmental Sciences. Vol. 12. No. 6 p. 1147–1158.
SHEIKH A.H., PALRIA S., ALAM A. 2011. Integration of GIS and Universal Soil Loss Equation (USLE) for soil loss estimation in a Himalayan watershed. Recent Research in Science and Technology. Vol. 3(3) p. 51–57.
Peraturan Direktur Jenderal Bina Pengelolaan Daerah Aliran Sungai dan Perhutanan Sosial nomor: P. 3/V-SET/2013 tentang pedoman identifikasi karakteristik daerah aliran sungai [The Regulation of the Director-General of Watershed Management and Social Forestry of the Republic of Indonesia number P. 3/V-SET/2013 regarding guidelines for identifying watershed characteristics] [online]. [Access 15.02.2020]. Available at: https://www.course-hero.com/file/44617251/P3-V-SET-2013-PEDOMAN-IDENTI-FIKASI-KARAKTERISTIK-DAERAH-ALIRAN-SUNGAIpdf/
Peraturan Menteri Kehutanan Republik Indonesia nomor: P. 61 /Menhut-II/2014 tentang monitoring dan evaluasi pengelolaan daerah aliran sungai [Regulation of the Minister of Forestry of the Republic of Indonesia number: P. 61 /Menhut-II/2014 regarding monitoring and evaluation of watershed management] [online]. [Access 15.02.2020]. Available at: http://satudata.semarangkota.go.id/adm/file/20171004150653PERMENKEMENHUTNo-morP.61-MENHUT-II-2014Tahun2014kemenhutnop.61-menhut-II-2014.pdf
Qanun Kabupetan Aceh Besar nomor 4 tahun 2013 tentang rencana tata ruang Willayah Kabupaten Aceh Besar tahun 2012–2032 [The Regulation of the spatial plan for the Aceh Besar Regency, 2012– 2032] [online]. [Access 15.02.2020]. Available at: http://bappeda.acehbesarkab.go.id/?p=820
TATIPATA W.H., SOEKARNO I., SABAR A., DAN LEGOWO S. 2015. Analysis of settle sediment volumes after t-year reservoirs in operation (Case study: Cirata Reservoir). Journal of Civil Engineering Theoretical and Applied Journal of Civil Engineering. Vol. 22(3) p. 235–242. DOI 10.5614/jts.2015.22.3.7.
UDDIN K., MURTHY M.S.R., SHAHRIAR M., WAHID MIR A., MATIN 2016. Estimation of Soil Erosion Dynamics in the Koshi Basin Using GIS and Remote Sensing to Assess Priority Areas for Conserva-tion. PLOS ONE. Vol. 1(3), e0150494. DOI 10.1371/journal.pone.0150494.
VERSTRAETEN G., POESEN J. 2001. Variability of dry sediment bulk density between and within retention ponds and its impact on the calculation of sediment yield. Earth Surface Processes and Landforms. Vol. 26 p. 375–394. DOI 10.1002/esp.186.
VIJITH H., MADHU G. 2008. Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS. Environmental Geology. Vol. 55(7) p. 1397–1405. DOI 10.1007/s00254-007-1090-2.
WISCHMEIER W.H., SMITH D.D. 1978. Predicting rainfall erosion losses – A guide to conservation planning. Agriculture Handbook. No. 537. Washington, DC, USA. US Department of Agriculture Science and Education Administration pp. 168.
XU Y., SHAO X., KONG X., PENG J., CAI Y. 2008. Adapting the RUSLE and GIS to model soil erosion risk in a mountains karst watershed, Guizhou Province, China. Environmental Monitoring and Assessment. Vol. 141 p. 275–286. DOI 10.1007/s10661-007-9894-9.
ZARFL C., LUCIA A. 2018. The connectivity between soil erosion and sediment entrapment in reservoirs. Current Opinion in Environ-mental Science & Health. Vol. 5 p. 53–59. DOI https://dx.doi.org/10.1016/j.coesh.2018.05.001.
ZHANG K., SHU A., XU X., YANG Q., YU B. 2008. Soil erodibility and its estimation for agricultural soils in China. Journal of Arid Environments. Vol. 72 p. 1002–1011. DOI 10.1016/j.jaridenv.2007.11.018.
Go to article

Authors and Affiliations

Azmeri Azmeri
1
ORCID: ORCID
Nurbaiti Nurbaiti
2
Nurul Mawaddah
1
Halida Yunita
1
ORCID: ORCID
Faris Zahran Jemi
3
ORCID: ORCID
Devi Sundary
1
ORCID: ORCID

  1. Universitas Syiah Kuala, Engineering Faculty, Civil Engineering Department, Syech Abdur-Rauf No. 7 Darussalam, 23111, Banda Aceh, Indonesia
  2. Ministry of Public Works and Housing (PUPR) BWS Sumatera-I, Indonesia
  3. Universitas Syiah Kuala, Engineering Faculty, Electrical Engineering Department, Banda Aceh, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

UNkulunkulu is a very important figure within Zulu pantheon but his nature is not really defined. Should he be considered God, a god or the first ancestor? The problem comes from Western (Christian) need to find and define a supreme deity within Zulu religious beliefs. In 2013, 2018 and 2019 I conducted thorough field-studies among South African sangomas and asked them about uNkulunkulu. This article aims to organise knowledge about uNkulunkulu and tries to place him within the deity stratum. Also, my research allows to show if searching for answers about uNkulunkulu is a Zulu problem or maybe just Western scholars’. Field studies that enabled writing this paper were sponsored by Polish National Science Centre, Poland (Narodowe Centrum Nauki), project no.: 2017/25/N/HS1/02500.

Go to article

Authors and Affiliations

Agnieszka Podolecka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

So far, numerous studies have been published on the selection of appropriate maintenance tactics based on some factors affecting them such as time, cost, and risk. This paper aims to develop the TRIZ contradiction matrix by explaining the dimensions and components of each of the following Reactive maintenance tactics. The related findings of previous studies were analyzed by adopting “Rousseau and Sandoski” seven-step method to identify and extract the relationships between TRIZ principles and Reactive maintenance tactics. Thereafter, 5 Reactive maintenance tactics were replaced TRIZ’s 40 principles in the TRIZ contradiction matrix. Finally, the ANP method were used to extract and prioritize the appropriate Reactive maintenance tactics. The proposed matrix in this research was used in the desalination section of one of the oil companies to select on the appropriate Reactive maintenance tactics. The results of this research is useful for managers and maintenance specialists of units in making decisions to provide appropriate Reactive maintenance tactics for the desired equipment.
Go to article

Authors and Affiliations

Mohammad Amin Mortazavi
1
Atefeh Amindoust
1
Arash Shahin
2
Mehdi Karbasian
3

  1. Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  2. Department of Management, University of Isfahan, Isfahan, Iran
  3. Department of Industrial Engineering, Malek-Ashtar University of Technology, Isfahan, Iran

This page uses 'cookies'. Learn more