Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The galvanic sludges contain a number of toxic heavy metals, potentially mobilized as chemically active ions under environmental conditions as. This study explores the application of fly ash-based geopolymers for the removal of Zn ions from galvanizing sludge. In this study, geopolymers, synthesized via the geopolymerization method, were used to remove Zn from post-galvanized sewage sludge. Two types of geopolymers were used, derived from ash from coal combustion and biomass combustion. Structural, morphological, and surface properties were characterized using FTIR and SEM, respectively. In addition, BET and Langmuir isotherms, along with analyses such as t-Plot and BJH method for porous solids were conducted. The results indicate that the geopolymer derived from coal combustion ash is a more effective sorbent for Zn(II) ions, exhibiting a removal efficiency of 99.9%, compared to 40.7% for the geopolymer derived from biomass combustion ash. The FTIR spectra analysis reveals the presence of bonds between the -OH and/or Si-OH groups on the geopolymers’ surface and the Zn(II) ions. The environmentally and economically advantageous process maximizes the recovery of a valuable component at minimal cost, yielding relatively clean monometallic waste suitable for reuse.
Go to article

Bibliography

[1]. Adewuyi, YG. (2021). Recent Advances in Fly-Ash-Based Geopolymers: Potential on the Utilization for Sustainable Environmental Remediation, ACS Omega, 24, pp. 15532-15542. DOI:10.1021/acsomega.1c00662
[2]. Akono, A.T., Koric, S. & Kriven, W.M. (2019). Influence of pore structure on the strength behavior of particle- and fiber reinforced metakaolin-based geopolymer composites, Cement and Concrete Composites, 104, pp. 103361. DOI:10.1016/j.cemconcomp.2019.103361
[3]. Alehyen, S., Zerzouri, M., el Alouani, M., el Achouri, M. & Taibi M. (2017). Porosity and fire resistance of fly ash based geopolymer. Journal of Materials and Environmental Sciences, 8, pp. 3676-3689
[4]. Ayilara, M.S., Olanrewaju, O.S., Babalola, O.O. & Odeyemi, O. (2020). Waste management through composition: Challenges and Potentials, Sustainability, 12, pp. 4456-4479. DOI:10.3390/su12114456
[5]. Barakat, M.A. (2003). The pyrometallurgical processing of galvanizing zinc ash and flue dust, Journal of Minerals, Metals & Materials Society, 55, pp. 26–29. DOI:10.1007/s11837-003-0100-4
[6]. Bednarik, M., Vondruska, M.& Koutny, M. (2005). Stabilization/solidification of galvanic sludges by asphalt emulsions, Journal of Hazardous Materials, 122, pp. 139-145. DOI:10.1016/j.jhazmat.2005.03.021
[7]. Brylewska, K., Rożek, P., Król, M. & Mozgawa, W. (2018). The influence of dealumination/desilication on structural properties of metakaolin-based geopolymers, Ceramics International, 44, pp. 12853-12861. DOI:10.1016/J.CERAMINT.2018.04.095
[8]. Butenegro, J.A., Bahrami, M., Abenojar, J. & Martínez, M.A. (2021). Recent Progress in Carbon Fiber Reinforced Polymers Recycling: A Review of Recycling Methods and Reuse of Carbon Fibers, Materials, 14, pp. 6401. DOI:10.3390/ma14216401
[9]. Donohue, M.D. & Aranovich, G.L. (1998). Adsorption hysteresis in porous solids, Journal of Colloid and Interface Science, 205, pp. 121-130. DOI:10.1006/jcis.1998.5639
[10]. Dvořák, P. & Jandova, J. (2005). Hydrometallurgical recovery of zinc from hot dip galvanizing ash, Hydrometallurgy, 77, pp. 29-33. DOI:10.1016/j.hydromet.2004.10.007
[11]. Galas, D., Kalembkiewicz, J. & Sitarz-Palczak, E. (2016). Physicochemistry, morphology and leachability of selected metals from post-galvanized sewage sludge from screw factory in Łańcut, SE Poland, Contemporary Trends in Geoscience, 5, pp. 83-91. DOI:10.1515/ctg-2016-0006
[12]. Jha, M.K., Kumar, V.& Singh R.J. (2001). Review of hydrometallurgical recovery of zinc from industrial wastes, Resources, Conservation and Recycling, 33, pp. 1-22. DOI:10.1016/S0921-3449(00)00095-1
[13]. Imtiaz, L., Rehman, S.K.U., Memon, S.A., Khan, M.K. & Javed, M.F. (2020). A review of recent developments and advances in eco-friendly geopolymer concrete, Applied Sciences, 10, pp. 7838-7894. DOI:10.3390/app10217838
[14]. Irisawa, T., Iwamura, R., Kozawa, Y., Kobayashi, S. & Tanabe, Y. (2021). Recycling methods for thermoplastic-matrix composites having high thermal stability in focusing on reuse of the carbon fibers, Carbon, 175, pp. 605. DOI:10.1016/j.carbon.2021.01.042
[15]. Jeyasundar, P.G.S.A., Ali, A. & Zhang, Z. (2020). Waste treatment approaches for environmental sustainability, Microorganisms for Sustainable Environmental and Health, 6, pp. 119-135. DOI:10.1016/B978-0-12-819001-2.00006-1
[16]. Khan, M.N.N., Kuri, J.C. & Sarker, P.K. (2021). Effect of waste glass powder as a partial precursor in ambient cured alkali activated fly ash and fly ash-GGBFS mortars, Journal of Building. Engineering, 34, pp. 101934-101945. DOI:10.1016/j.conbuildmat.2020.120177
[17]. Kriven W.M., Bell J.L. & Gordon M. (2006). Microstructure and Microchemistry of Fully-Reacted Geopolymers and Geopolymer Matrix Composites. In: Bansal, N.P., Singh, J.P., Kriven, W.M., Schneider, H., Advances in Ceramic Matrix Composites IX (pp. 227-250). The American Ceramic Society, Wiley, New York 2006.
[18]. Krishnan, S., Zulkapli, N.S., Kamyab, H., Taib, S.M., Bin Md Din, M.F., Majid, Z.A., Chaiprapat, S., Kenzo, I., Ichikawa, Y., Nasrullah, M., Chelliapan, S. & Othman, N. (2021). Current technologies for recovery of metals from industrial wastes: An overview, Environmental Technology & Innovation, 22, pp.101525. DOI:10.1016/j.eti.2021.101525
[19]. Król, M., Rożek, P., Chlebda ,D. & Mozgawa, W. (2018). Influence of alkali metal cations/type of activator on the structure of alkali-activated fly ash - ATR-FTIR studies, Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy, 198, pp. 33-37. DOI:https://doi.org/10.1016/j.saa.2018.02.067
[20]. Krstić, I., Zec, S., Lazarević, V., Stanisavljević, M. & Golubović, T (2018). Use of sintering to immobilize toxic metals present in galvanic sludge into a stabile glass-ceramic structure, Science of Sintering, 50, pp. 139-147. DOI:10.2298/SOS1802139K
[21]. Kwon, O-S. & Sohn, I.L. (2020). Fundamental thermokinetic study of a sustainable lithium-ion battery pyrometallurgical recycling process, Resources, Conservation and Recycling, 158, pp. 104809. DOI:10.1016/j.resconrec.2020.104809.
[22]. Letcher, R.M.b& Vallero, D.A. (2019). Waste. A Handbook for Management, 2, pp. 585-630. DOI:10.1016/B978-0-12-381475-3.10034-8
[23]. Li, M., Xu, J. & Li, B. (2018). Analysis of development of hazardous waste disposal technology in China, IOP Conf. Series: Earth and Environmental Science, 178, pp. 1-7. DOI:10.1088/1755-1315/178/1/012027
[24]. Luo, X., Liu, G., Xia, Y., Chen, L., Jiang, Z., Zheng, H. & Wang, Z. (2017). Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta China, Journal of Soil and Sediments, 17, pp. 780-789. DOI:10.1007/s11368-016-1361-1
[25]. Luukkonen, T., Runtti, H., Niskanen, M., Tolonen, E., Sarkkinen, M., Kemppainen, K.,Rämö, J. & Lassi, U. (2016). Simultaneous removal of Ni(II), As(III), and Sb(III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers, Journal of.Environmental Management, 166, pp. 579-588. DOI:10.1016/j.jenvman.2015.11.007
[26]. Luz, C.A., Rocha, J.C., Cheriaf, M. & Pera, ,J. (2009). Valorization of galvanic sludge in sulfoaluminate cement, Construction and Building Materials, 23, pp. 595-601. DOI:10.1016/j.conbuildmat.2008.04.004
[27]. Makisha, N. & Yunchina, M. (2017). Methods and solutions for galvanic waste water treatment, MATEC Web of Conferences, 106, pp. 1-6. DOI:10.1051/matecconf/201710607016
[28]. Nanda, S. & Berruti, F. (2021). Municipal solid waste management and landfilling technologies: a review, Environmental Chemical Letter, 19, pp. 1433-1456. DOI:10.1007/s10311-020-01100-y
[29]. Pu, S., Duan, P., Yan, C. & Ren, D. (2016). Influence of sepiolite addition on mechanical strength and microstructure of fly ash-metakaolin geopolymer paste. Advanced Powder Technology,27, pp. 2470-2477. DOI:10.1016/j.apt.2016.09.002
[30]. Riaz, M., Bing Chen, A., Aminul Haque, M. & Shah, S.F.A. (2020). Utilization of industrial and hazardous waste materials to formulate energy-efficient hygrothermal biocomposites, Journal of Cleaner Production, 250, pp. 119469. DOI:10.1016/j.jclepro.2019.119469
[31]. Rossini, G. & Bernardes, A.M. (2006). Galvanic sludge metals recovery by pyrometallurgical and hydrometallurgical treatment, Journal of Hazardous Materials, 131, pp. 210-216. DOI:10.1016/j.jhazmat.2005.09.035.
[32]. Rudnik, E. (2019). Investigation of industrial waste materials for hydrometallurgical recovery of zinc, Minerals Engineering,139, pp. 105871. DOI:10.1016/j.mineng.2019.105871
[33]. Rybak, J., Gorbatyuk, S.M., Bujanovna-Syuryun, K.C., Khairutdinov, A., Tyulyaeva, Y. & Makarov, P.S. (2021). Utilization of Mineral Waste: A Method for Expanding the Mineral Resource Base of a Mining and Smelting Company, Metallurgist, 64, pp. 851-861. DOI:10.1007/s11015-021-01065-5
[34]. Sanito, R.C., Bernuy-Zumaeta, M., You, S-J. & Wang Y-F. (2022). A review on vitrification technologies of hazardous waste, Journal of Environmental Management, 316, pp. 115243. DOI:10.1016/j.jenvnman.2022.115243
[35]. Sinha, S., R. Choudhari, R., Mishra, D., Shekhar, S., Agrawal, A. & Sahu, K.K. (2020). Valorisation of waste galvanizing dross: Emphasis on recovery of zinc with zero effluent strategy, Journal of Environmental Management, 256, pp. 109985. DOI:10.1016/j.jenvman.2019.109985
[36]. Sitarz–Palczak, E.; Kalembkiewicz, J. & Galas, D. (2019). Comparative study on the characteristics of coal fly ash and biomass ash geopolymers, Archives of Environmental Protection 45, pp. 126-135. DOI:10.24425/aep.2019.126427
[37]. Stepanov, S., Morozov, N., Morozova, N., Ayupov, D., Makarov, D. & Baishev, D. (2016). Efficiency of Use of Galvanic Sludge in Cement Systems, Procedia Engineering, 165, pp.1112-1117. DOI:10.1016/j.proeng.2016.11.827
[38]. Świerk, K., Bielicka, A., Bojanowska, I. & Maćkiewicz, Z. (2007). Investigation of Heavy Metals Leaching from industrial wastewater sludge, Polish Journal of Environmental Studies, 16, pp. 447-451.
[39]. Šćiban, M., Radetić, B., Kevrešan, Z. & Klašnja, M. (2007). Adsorption of heavy metals from electroplating wastewater by wood sawdust, Bioresource Technology, 98, pp. 402-409. DOI:10.1016/j.biortech.2005.12.014
[40]. Toledo, M., Siles, J.A., Gutierrez, M.C. & Martin, M.A. (2018). Monitoring of the composting process of different agroindustrial waste: influence of the operational variables on the odorous impact, Waste Management, 76, pp. 266-274. DOI:10.1016/j.wasman.2018.03.042
[41]. Ugwu, E.I. & Agunwamba, J.C. (2020). A review on the applicability of activated carbon derived from plant biomass in adsorption of chromium, copper, and zinc from industrial wastewater, Environmental Monitoring and Assessment, 192, pp. 240-252. DOI:10.1007/s10661-020-8162-0
[42]. Yang, J., Firsbach, F. & Sohn, I.L. (2022). Pyrometallurgical processing of ferrous slag “co-product” zero waste full utilization: A critical review, Resources, Conservation and Recycling, 178, pp. 106021. DOI:10.1016/j.resconrec.2021.106021
[43]. Zehua, J., Liya, S. & Yuansheng, P. (2020). Synthesis and toxic metals (Cd, Pb, and Zn) immobilization properties of drinking water treatment residuals and metakaolin-based geopolymers, Materials Chemistry and Physics, 242, pp. 1-9. DOI:10.1016/j.matchemphys.2019.122535
Go to article

Authors and Affiliations

Elżbieta Sitarz-Palczak
1
ORCID: ORCID

  1. Rzeszow University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper focuses on investigation of properties of two most widely used self-set sand binder systems APNB and FNB across the Globe, for making molds and cores in foundries to produce castings of different sizes involving wide range of metals and alloys, ferrous and nonferrous. This includes study of compression strength values of samples made out of molding sand at different binder addition level using new, mechanically reclaimed (MR) and thermally reclaimed (TR) sand. Strength values studied include dry strength (at room temperature) at specified intervals simulating different stages of mold handling, namely stripping and pre heating, followed by degraded strength after application of thinner based zircon wash by brush, subsequent lighting of, then checking strength both in warm (degraded strength) & cold (recovered strength) conditions. Throughout the cycle of mold movement from stripping to knock out, strength requirements can be divided into two broad classifications, one from stripping to closing (dry strength) and another from pouring to knock out (hot & retained strength). Although the process for checking of dry strength are well documented, no method using simple equipments for checking hot & retained strength are documented in literature. Attempts have been made in this paper to use some simple methods to standardize process for checking high strength properties using ordinary laboratory equipments. Temperature of 450°C has been chosen by trial & error method to study high temperature properties to get consistent & amplified values. Volume of gases generated for both binders in laboratory at 850°C have also been measured. Nature of gases including harmful BTEX and PAH generated on pyrolysis of FNB and APNB bonded sands are already documented in a publication [1]. This exercise has once again been repeated in same laboratory, AGH University, Poland with latest binder formulations in use in two foundries in India.

Go to article

Authors and Affiliations

Dipak K. Ghosh
Download PDF Download RIS Download Bibtex

Abstract

To investigate the adsorptive properties of a local laterite deposited in Chenzhou, Hunan province, China, the adsorptive properties of the natural laterite were investigated by batch technique in this study. The effects of contact time, pH, ionic strength, temperature, and the concentration on adsorption properties were also analyzed. The obtained experimental results show that the main mineral composition of laterite is kaolinite and montmorillonite. The adsorption process achieved equilibrium within 60 minutes and 90 minutes for Sr(II) and Cr(VI), respectively. The adsorption capacities for Cr(VI) and Sr(II) by the laterite were about 7.25 mg·g-1 and 8.35 mg·g-1 under the given experimental conditions, respectively. The equilibrium adsorption data were fitted to the second-order kinetic equation. The adsorption capacity for Sr(II) onto the laterite increased with increasing pH from 3–11 but decreased with increasing ionic strength from 0.001 to 1.0 M NaCl. The Sr(II) adsorption reaction on laterite was endothermic and the process of adsorption was favored at high temperature. Similarly, the adsorption capacity for Cr(VI) onto the laterite increased with increasing pH from 3–11, however, the ionic strength and temperature had an insignificant effect on Cr(VI) adsorption. The adsorption of Cr(VI) and Sr(II) was dominated by ion exchange and surface complexation in this work. Furthermore, the Langmuir and Freundlich adsorption isotherm model was used for the description of the adsorption process. The results suggest that the studied laterite samples can be effectively used for the treatment of contaminated wastewaters.

Go to article

Authors and Affiliations

Yong He
Yong-gui Chen
Ke-neng Zhang
Wei-min Ye
Dong-yu Wu

This page uses 'cookies'. Learn more