Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The mechanical response of interpenetrating co-continuous composite Al-Si12/SiC3D was described for uniaxial tension and compression. The internal structure of the IPC was examined by optical microscopy and micro-CT. The apparent density and Young’s modulus were assessed theoretically and experimentally. Uniaxial tensile tests were performed using the prismatic samples of dimensions 1 mm × 2 mm × 30 mm. Cylindrical samples of diameters ϕ = 5 mm and height h = 10 mm were subjected to quasi-static uniaxial compressive loading. During tests, the side surfaces of the specimen were observed using a digital image correlation system (DIC) to find strain fields and to monitor the surface cracks development in the complex internal microstructure of the IPC.
The analyzed two-phase ICP was manufactured using ceramic foam SiC infiltrated by alloy Al-Si12. This material finds application in cosmic, airplane, or automobile industries, due to their excellent tribological, heat distribution, and ballistic properties.
Obtained results show different modes of microcracking and fracture of cylindrical and prismatic samples. They indicate the substantial influence of the ceramic skeleton on the behavior of the IPC under uniaxial states of loading. Different modes of damage related to the tension or compression loading were described in detail. The results can find application in the designing process of modern co-continuous IPCs and further development of the numerical models of degradation processes.
Go to article

Authors and Affiliations

D. Pietras
1
T. Sadowski
1
M. Boniecki
2
E. Postek
3

  1. Lublin University of Technology, 20-618 Lublin, 38D Nadbystrzycka Str., Poland
  2. Łukasiewicz Research Network, Institute of Microelectronics and Photonics , 02-668 Warsaw, Poland
  3. Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The requirements for environmentally friendly refrigerants promote application of CO2and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.
Go to article

Authors and Affiliations

Piotr Cyklis
Ryszard Kantor
Tomasz Ryncarz
Bogusław Górski
Roman Duda

This page uses 'cookies'. Learn more