Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Annual losses of cocoa in Ghana to insect pests are significant. The use of integrated pest management (IPM) tools is critical for effective pest management. Previous studies on the subject have considered how farmers perceive the economic impact of insect pests on cocoa. These studies however did not investigate farmers’ ability to identify pests, associated damage symptoms and their implications for pest management. The current study, therefore, assessed farmers’ ability to correctly associate insect damage with the pest species that caused it. A total of 600 farmers were interviewed in the Eastern, Ashanti, Western, Brong Ahafo and Central Regions of Ghana with a structured open and closedended questionnaire. Most farmers (>85%) were unable to correctly identify and associate pests to their damage. The majority (>80%) of farmers also could not link the immature stages of insect pests to their adult stages. Wrong identification of the major pests (>85%) led to a wide variation in the timing of insecticide application amongst farmers. The majority of the farmers (60%) interviewed had not received training in insect pest identification. The study shows that 90% of the farmers, who had received some training, got it from the Cocoa Health and Extension Division (CHED) of the Ghana Cocoa Board (COCOBOD). Almost all respondents (98%) agreed that correct pest identification is critical for effective pest control. The importance of pest identification and monitoring as a component of IPM is discussed.
Go to article

Authors and Affiliations

Godfred Kweku Awudzi
1
Richard Adu-Acheampong
1
Silas Wintuma Avicor
1
Yahaya Bukari
2
Millicent Adomaa Yeboah
3
Edmond Kwadwo Oti Boateng
4
Stephen Kwame Ahadzi
1

  1. Entomology, Cocoa Research Institute of Ghana (CRIG), Ghana
  2. Plant Pathology, Cocoa Research Institute of Ghana (CRIG), Ghana
  3. Extension, Cocoa Health and Extension Division (CHED), Ghana
  4. Social Science and Statistics Unit (SSU), Cocoa Research Institute of Ghana (CRIG), Ghana
Download PDF Download RIS Download Bibtex

Abstract

The aquifer system of the Remila plain (Khenchela, Algeria), covering 250 km2, is one of the semiarid regions where groundwater is heavily exploited for urban supply and irrigation. An integrated hydrochemical and statistical analysis was performed on 70 water samples to identify the main processes and the origin of salinisation of our waters. Chemical analyses indicate salinity values (TDS) ranging from 568 to 1586 mg·dm–3 with an average of 869 mg·dm–3, with sulphate being the dominant ions, especially in the north and northeastern parts of the region. The identified chemical facies are SO4-Cl-Ca in the northeastern part, SO4-Cl-Ca-Mg present in most waters, and HCO3- Ca-Mg in the southeastern part.
We applied the statistical approach to group the waters into three categories using Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA); 1) saline waters (23%) (TDS > 1000 mg·dm–3 and SO42– dominance), 2) moderately saline waters (51%) with HCO3– dominance, 3) moderately saline waters (26%) with a mixed facies. The binary ion diagrams used suggest that the main hydrochemical processes are: evaporites dissolution and/or precipitation, accompanied by an exchange and/or reverse exchange of ions. Additionally, another process was detected in the northeastern part of the area; the saline intrusion of Sabkha waters, favoured by intensive aquifer exploitation.
Go to article

Authors and Affiliations

Laiche Aouidane
1
Mohamed Belhamra
2
Asma Kheddouma
3

  1. University of Abbes Laghrour Khenchela, Faculty of Nature and Life Sciences, Department of Agricultural Sciences, Route de Batna; Boîte Postale 1252 Khenchela, 40004 Khenchela, Algeria
  2. University of Mohamed Khider, Department of Agricultural Sciences, Biskra, Algeria
  3. University of Abbes Laghrour Khenchela, Faculty of Nature and Life Sciences, Department of Biology, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The study concerns modeling and simulation of the growth of biofilms with heterogeneous structures with a discrete mathematical model based on theory of cellular automata. The article presents two-dimensional density distributions of biofilms for microbial processes: oxidation of ammonium by Nitrosomonas europaea bacteria and glucose utilization by Pseudomonas aeruginosa bacteria. The influence of limiting substrate concentration in the liquid phase on biofilm structure was determined. It has been shown that the value of death rate coefficient of microorganisms has the qualitative and quantitative influence on the density and porosity of the biofilm.

Go to article

Authors and Affiliations

Szymon Skoneczny
Download PDF Download RIS Download Bibtex

Abstract

The direct carbon fuel cell technology provides excellent conditions for conversion of chemical energy of carbon-containing solid fuels directly into electricity. The technology is very promising since it is relatively simple compared to other fuel cell technologies and accepts all carbon-reach substances as possible fuels. Furthermore, it makes possible to use atmospheric oxygen as the oxidizer. In this paper the results of authors' recent investigations focused on analysis of the performance of a direct carbon fuel cell supplied with graphite, granulated carbonized biomass (biocarbon), and granulated hard coal are presented. The comparison of the voltage-current characteristics indicated that the results obtained for the case when the cell was operated with carbonized biomass and hard coal were much more promising than those obtained for graphite. The effects of fuel type and the surface area of the cathode on operation performance of the fuel cell were also discussed.
Go to article

Authors and Affiliations

Andrzej Kacprzak
Rafał Kobyłecki
Zbigniew Bis
Download PDF Download RIS Download Bibtex

Abstract

Analyses of the ground waters in respect of presence of residues of plant protection products, i.e. active substances as well as environmental metabolites thereof are performed in the Institute of Plant Protection since the end of 80ties of the past Century. Based on the results obtained in 1993–1994 for 40 wells located in administrative territories of former Poznań, Toruń and Bydgoszcz voivodeships, in the vicinity of intensive agricultural production areas (orchards, farms), wells where significant amounts of residues of triazines group and dealkylated metabolites thereof had been found previously were qualified to further studies. There were 6 wells in which triazine residues were determined most often. Additionally, based on hydrogeological maps, directions of underflows in the areas of well’s locations were determined as well. The aim of the above was to find the additional places for sampling waters distant from pollution sources and estimation of the level of residues of target compounds depending on distance from the basic wells. Seven triazine compounds including basic active substances (atrazine, simazine) and their metabolites [desethyl atrazine, desisopropyl atrazine, desethyldesisopropyl atrazine, hydroxyatrazine and hydroxysimazine] were selected for the presented studies. Residues were analyzed using methodologies designed in the Institute, i.e. solid-phase extraction (SPE) followed by determination by chromatographic techniques HPLC-PDA, GC-NPD and GC-MS. Generally, during 11 years of investigations (1993–2003) samplings were performed 52 times and 323 samples of groundwater including that from additional wells were analyzed. Most often residues of atrazine and deethylatrazine in wells located in environs of Poznań were detected.

Go to article

Authors and Affiliations

Dariusz Drożdżyński
Download PDF Download RIS Download Bibtex

Abstract

By the use of different distribution methods of dynamical characteristics in the form of slowness function, mechatronic discrete systems have been synthesized. Each model consists of mechanical discrete part and a piezostack actuator connected to LxRxCx external network that has to comply with dynamical requirements in the form of poles and zeros. External network can work within different configurations. In this paper, one investigates the influence of negative parameters of stiffness in mechanical replacement models and capacitance in final mechatronic structures, after dimensionless transformations and retransformations.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Katarzyna Białas
Andrzej Buchacz
Damian Gałęziowski

Download PDF Download RIS Download Bibtex

Abstract

The article discusses the matter of portraying Suleiman I the Magnificent in 16th century Croatian and Slovakian literature. The source material comprises three texts: Ferenc Črnko’s Croatian chronicle titled Podsjedanje i osvojenje Sigeta [The Siege and Capture of Siget], the Croatian epic tale Vazetje Sigeta grada [The Caputure of Siget Town] by Brne Karnarutić and the Slovakian anonymous historical song Píseň o Sigetském zámku [A Song about Siget Castle]. By looking at these texts the author hereof contemplates what image of the Turkish ruler has been recorded in Slavic literatures.

Go to article

Authors and Affiliations

Monika Sagało

This page uses 'cookies'. Learn more