Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 246
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

On the one hand, shale gas extraction has been portrayed as the future of Poland's energy sector, and on the other, as an undertaking potentially harmful to the natural environment that might spark public protests. Why are opinions on this issue so widely disparate?
Go to article

Authors and Affiliations

Magdalena Sidorczuk
Piotr Stankiewicz
Download PDF Download RIS Download Bibtex

Abstract

There are approximately 15 million users of system heat in Poland, but unfortunately nearly 70% of the fuel used in heat production is fossil fuel. Therefore, the CO2 emission reduction in the heat production industry is becoming one of the key challenges. City Heat Distribution Enterprise Ltd. in Nowy Sącz (Miejskie Przedsiębiorstwo Energetyki Cieplnej sp. z o.o.) has been conducting a self-financed research and development project entitled The use of algae as carbon dioxide absorbers at MPEC Nowy Sącz. The project deals with postcombustion CO2 capture using Chlorella vulgaris algae. As a result of tests conducted in a 1000 l hermetic container under optimal temperature and light conditions, the recovery of biomass can be performed in weekly cycles, yielding approximately 25 kilograms of biomass per year. Assuming that half of the dry mass of the algae is carbon, it can be said that 240 grams of carbon is bound in one cycle, which, converted to CO2, gives 880 grams of this gas. Our results showed that around 45.8 kilograms of CO2 per year was absorbed. Additionally, it is possible to use waste materials and by-products of technological processes as a nutrient medium for algae
Go to article

Bibliography

  1. Bordignon, M. & Gamannossi degl’Innocenti, D. (2023). Third Time’s a Charm? As-sessing the Impact of the Third Phase of the EU ETS on CO2 Emissions and Performance. Sustainability, 15(8), 6394. DOI:10.3390/su15086394
  2. Brożyna, J., Strielkowski, W. & Zpěvák, A. (2023). Evaluating the Chances of Implementing the “Fit for 55” Green Transition Package in the V4 Countries. Energies, 16(6), 2764. DOI:10.3390/en16062764
  3. Chłopek, Z., Lasocki, J., Melka, K. & Szczepański, K. (2021). Equivalent Carbon Dioxide Emission in Useful Energy Generation in the Heat-generating Plant – Application of the Carbon Footprint Methodology. Journal of Ecological Engineering, 22(2), pp. 144–154. DOI:10.12911/22998993/130891
  4. Daliry, S., Hallajisani, A., Mohammadi Roshandeh, J., Nouri, H. & Golzary, A. (2017). Investigation of optimal condition for Chlorella vulgaris microalgae growth. Global Journal of Environmental Science and Management, 3(2), pp. 217–230. DOI:10.22034/gjesm.2017.03.02.010
  5. Dyachok, V., Mandryk, S., Huhlych, S. & Slyvka, M. (2020). Study of the Impact of Activators in the Presence of an Inhibitor on the Dynamics of Carbon Dioxide Absorption by Chlorophyll-Synthesizing Microalgae. Journal of Ecological Engineering, 21(5), pp. 189–196. DOI:10.12911/22998993/122674
  6. Dyachok, V., Mandryk, S., Katysheva, V. & Huhlych, S. (2019). Effect of Fuel Combustion Products on Carbon Dioxide Uptake Dynamics of Chlorophyll Synthesizing Microalgae. Journal of Ecological Engineering, 20(6), pp.18–24. DOI:10.12911/22998993/108695
  7. Dziosa, K. & Makowska, M. (2015). The influence of temperature on the growth of biomass of freshwater micro-algae grown in laboratory. Inżynieria i Aparatura Chemiczna, 54(4), pp.152–153. (in Polish)
  8. Erdiwansyah, E., Gani, A., Mamat, R., Mahidin, M., Sudhakar, K., Rosdi, S. M. & Husin, H. (2022). Biomass and wind energy as sources of renewable energy for a more sustainable environment in Indonesia: A review. Archives of Environmental Protection, 48(3), pp. 57–69. DOI:10.24425/aep.2022.142690
  9. Faizal, M., Said, M., Nurisman, E. & Aprianti, N. (2021). Purification of Synthetic Gas from Fine Coal Waste Gasification as a Clean Fuel. Journal of Ecological Engineering, 22(5), pp. 114–120. DOI:10.12911/22998993/135862
  10. Fawzy, S., Osman, A. I., Mehta, N., Moran, D., Al-Muhtaseb, A. H. & Rooney, D. W. (2022). Atmospheric carbon removal via industrial biochar systems: A techno-economic-environmental study. Journal of Cleaner Production, 371, 133660. DOI:10.1016/j.jclepro.2022.133660
  11. Font-Palma, C., Cann, D. & Udemu, C. (2021). Review of cryogenic carbon capture innovations and their potential applications. C - Journal of Carbon Research, 7(3), 58. DOI:10.3390/c7030058
  12. Iglina, T., Iglin, P. & Pashchenko, D. (2022). Industrial CO2 Capture by Algae: A Review and Recent Advances. Sustainability, 14(7), 3801. DOI:10.3390/su14073801
  13. International Energy Agency. (2023). CO2 Emissions in 2022. https://www.iea.org/reports/co2-emissions-in-2022
  14. Izba Gospodarcza Ciepłownictwo Polskie. (2023). Transformacja i rozwój ciepłownictwa systemowego w Polsce. Raport 2023.
  15. Kammerer, S., Borho, I., Jung, J. & Schmidt, M. S. (2023). Review: CO2 capturing methods of the last two decades. International Journal of Environmental Science and Technology, 20(7), pp. 8087–8104. DOI:10.1007/s13762-022-04680-0
  16. Kozieł, W. & Włodarczyk, T. (2011). Algae – biomass production (a reviev). Acta Agrophysica, 17(1), pp. 105–116. http://www.acta-agrophysica.org/Algae-biomass-production-a-reviev,107203,0,2.html
  17. Kupczak, P. (2021). Energy transformation of medium-sized PECs. Energety-ka Cieplna i Zawodowa, 2, pp. 24–27. https://issuu.com/marfi1976/docs/2_2021_energetyka_issuu (in Polish)
  18. Kupczak, P. (2022). How to save energy resources in times of their shortage? Nowa Energia, 85(4), pp. 30–35. (in Polish)
  19. Liu, L., Xia, M., Hao, J., Xu, H. & Song, W. (2021). Biosorption of Pb (II) by the resistant Enterobacter sp.: Investigated by kinetics, equilibriumand thermodynamics. Archives of Environmental Protection, 47(3), pp. 28–36. DOI:10.24425/aep.2021.138461
  20. Madejski, P., Chmiel, K., Subramanian, N. & Kuś, T. (2022). Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies. Energies, 15(3), 887. DOI:10.3390/en15030887
  21. Matejczyk, M., Kondzior, P., Ofman, P., Juszczuk-Kubiak, E., Świsłocka, R., Łaska, G., Wiater, J. & Lewandowski, W. (2023). Atrazine toxicity in marine algae Chlorella vulgaris and in E. coli lux and gfp biosensor tests. Archives of Environmental Protection, 49(3), 87–99. DOI:10.24425/aep.2023.147331
  22. Metsoviti, M. N., Papapolymerou, G., Karapanagiotidis, I. T. & Katsoulas, N. (2019). Effect of Light Intensity and Quality on Growth Rate and Composition of Chlorella vulgaris. Plants, 9(1), 31. DOI:10.3390/plants9010031
  23. Nord, L. O. & Bolland, O. (2020). Carbon dioxide emission management in power generation. John Wiley & Sons.
  24. Osman, A. I., Hefny, M., Abdel Maksoud, M. I. A., Elgarahy, A. M. & Rooney, D. W. (2021). Recent advances in carbon capture storage and utilisation technologies: a review. Environmental Chemistry Letters, 19(2), pp. 797–849. DOI:10.1007/s10311-020-01133-3
  25. Rogulj, I., Peretto, M., Oikonomou, V., Ebrahimigharehbaghi, S. & Tourkolias, C. (2023). Decarbonisation Policies in the Residential Sector and Energy Poverty: Mitigation Strategies and Impacts in Central and Southern Eastern Europe. Energies, 16(14), 5443. DOI:10.3390/en16145443
  26. Sarwer, A., Hamed, S. M., Osman, A. I., Jamil, F., Al-Muhtaseb, A. H., Alhajeri, N. S. & Rooney, D. W. (2022). Algal biomass valorization for biofuel production and car-bon sequestration: a review. Environmental Chemistry Letters, 20(5), pp. 2797–2851. DOI:10.1007/s10311-022-01458-1
  27. Schwister, K. & Leven, V. (2020). Verfahrenstechnik für Ingenieure: Ein Lehrund Übungsbuch (mit umfangreichem Zusatzmaterial). Carl Hanser Verlag GmbH Co KG.
  28. Sifat, N. S. & Haseli, Y. (2019). A Critical Review of CO2 Capture Technologies and Prospects for Clean Power Generation. Energies, 12(21), 4143. DOI:10.3390/en12214143
  29. Skawińska, A., Lasek, J. & Adamczyk, M. (2014). Study of CO2 removal processes using microalgae. Inżynieria i Aparatura Chemiczna, 53(4), pp. 292–293. (in Polish)
  30. Skompski, S., Kozłowska, A., Kozłowski, W. & Łuczyńsko, P. (2023). Coexistence of algae and a graptolite-like problematical: a case study from the late Silurian of Podolia (Ukraine). Acta Geologica Polonica, 73(2), pp. 115–133. DOI:10.24425/agp.2022.143599
  31. Szatyłowicz, E., Patyna, A., Biłos, Ł., Płaczek, M. & Witczak, S. (2017). Productivity of microalgae Chlorella vulgaris in laboratory condition. Inżynieria Ekologiczna, 18(3), pp. 99–105. DOI:10.12912/23920629/70264
  32. Tleukeyeva, A., Pankiewicz, R., Issayeva, A., Alibayev, N. & Tleukeyev, Z. (2021). Green Algae as a Way to Utilize Phosphorus Waste. Journal of Ecological Engineering, 22(10), pp. 235–240. DOI:10.12911/22998993/142451
  33. Urbina-Suarez, N. A., Barajas-Solano, A. F., Garcia-Martinez, J. B., Lopez-Barrera, G. L. & Gonzalez-Delgado, A. D. (2021). Cultivation of Chlorella sp. for biodiesel production using two farming wastewaters in eastern Colombia. Journal of Water and Land Development, 50. DOI:10.24425/jwld.2021.138169
  34. Urbina-Suarez, N. A., Barajas-Solano, A. F., Garcia-Martinez, J. B., Lopez-Barrera, G. L. & Gonzalez-Delgado, A. D. (2022). Prospects for using wastewater from a farm for algae cultivation: The case of Eastern Colombia. Journal of Water and Land Development, 52, pp. 172–179. DOI:10.24425/jwld.2022.140387
  35. Urząd Regulacji Energetyki. (2022). Thermal energy in numbers. 2021. (in Polish)
  36. Valdovinos-García, E. M., Barajas-Fernández, J., Olán-Acosta, M. de los Á., Petriz-Prieto, M. A., Guzmán-López, A. & Bravo-Sánchez, M. G. (2020). Techno-Economic Study of CO2 Capture of a Thermoelectric Plant Using Microalgae (Chlorella vulgaris) for Production of Feedstock for Bioenergy. Energies, 13(2), 413. DOI:10.3390/en13020413
  37. Xie, K., Fu, Q., Qiao, G. G. & Webley, P. A. (2019). Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. Journal of Membrane Science, 572, pp. 38–60. DOI:10.1016/j.memsci.2018.10.049
  38. Yerizam, M., Jannah, A. & Aprianti, N. (2023). Bioethanol Production from Chlorella Pyrenoidosa by Using Enzymatic Hydrolysis and Fermentation Method. Journal of Ecological Engineering, 24(1), pp. 34–40. DOI:10.12911/22998993/156000
  39. Yu, Y., Fang, X., Li, L. & Xu, Y. (2023). Performance and mechanism of Carrousel oxidation ditch and water Spinach wetland combined process in treating water hyacinth (Pontederia crassipes) biogas slurry. Archives of Environmental Protection, 49(1), pp. 39–46. DOI:10.24425/aep.2023.144735
  40. Zhou, W., Wang, J., Chen, P., Ji, C., Kang, Q., Lu, B., Li, K., Liu, J. & Ruan, R. (2017). Biomitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renewable and Sustainable Energy Reviews, 76, pp. 1163–1175. DOI:10.1016/j.rser.2017.03.065
Go to article

Authors and Affiliations

Paweł Kupczak
1
ORCID: ORCID
Sylwester Kulig
1
ORCID: ORCID

  1. Miejskie Przedsiębiorstwo Energetyki Cieplnej sp. z o.o. w Nowym Sączu, Poland

Authors and Affiliations

Dorota Pyć
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The advent of language implementation tools such as PyPy and Truffle/Graal have reinvigorated and broadened interest in topics related to automatic compiler generation and optimization. Given this broader interest, we revisit the Futamura Projections using a novel diagram scheme. Through these diagrams we emphasize the recurring patterns in the Futamura Projections while addressing their complexity and abstract nature. We anticipate that this approach will improve the accessibility of the Futamura Projections and help foster analysis of those new tools through the lens of partial evaluation.

Go to article

Authors and Affiliations

Brandon P. Williams
Saverio Perugini
Download PDF Download RIS Download Bibtex

Abstract

The article outlines how to use the convergence of collections to determine the position of a mobile device based on the WiFi radio signal strength with the use of fuzzy sets. The main aim is the development of the method for indoor position determination based on existing WiFi network infrastructure indoors. The approach is based on the WiFi radio infrastructure existing inside the buildings and requires operating mobile devices such as smartphones or tablets. An SQL database engine is also necessary as a widespread data interface. The SQL approach is not limited to the determination of the position but also to the creation of maps in which the system dening the position of the mobile device will operate. In addition, implementation issues are presented along with the distribution of the burden of performing calculations and the benets of such an approach for determining the location. The authors describe how to decompose the task of determining the position in a client-server architecture.

Go to article

Authors and Affiliations

Michał Socha
Wojciech Górka
Iwona Kostorz
Download PDF Download RIS Download Bibtex

Abstract

Fly-ash is a form of production waste produced as a result of the burning of coal for energy production. Millions of tonnes of this waste are produced worldwide every year; hence it is extremely important to dispose of it in a useful way, including through treating the initial raw material to obtain a material of higher quality. The aim of the present work is to determine the suitability of processed fly-ash from lignite for reinforcing (stabilizing) soils used in the building of road foundations and embankments. The results provide a method of recycling this waste while at the same time obtaining new materials and technologies for use in road building. This is an important issue both environmentally and in terms of the positive effect that processed fly-ash can have on the stability of road structures.

This article presents the results of experiments carried out using fly-ash produced from lignite at the P¹tnów Power Plant. This ash was first modified (activated) using a Wapeco magnetic activator, and then used to produce hydraulic binders (with the addition of cement) and soil-binder mixtures. These mixtures were made using natural soils from seven different deposits in the Lubuskie region (western Poland). They were stabilized using two hydraulic binders (strength ratings 3 MPa and 9 MPa) added in different amounts (6% and 8% relative to the mass of the soil). During the experiment, a determination was made of the increase in the strength of the analysed samples (after 14, 28, and 42 days) and the increase in the bearing ratio (immediately after consolidation and after 7 days).

Interpretation of the results of the experiment made it possible to assess the dynamics of the increase in compression strength and load-bearing capacity of various soils stabilized with hydraulic binders produced from lignite ash, and to indicate possibilities for the use of these materials.

The analysis showed that it is possible to use these binders for the stabilisation of soils, enabling soils formerly considered to have weak load-bearing capacity (clayey sand; clayey, sandy gravel; clays) to be classified as fully usable in road construction.

Go to article

Authors and Affiliations

Urszula Kołodziejczyk
Michał Ćwiąkała
Aleksander Widuch
Download PDF Download RIS Download Bibtex

Abstract

Assuming correlation only within the results of measurement repetitions for each quantity observed in a network, equivalence has been proved for two forms of parametric adjustment model, which differ in the approach to measurement repetitions and are called the one-stage and the two-stage model respectively. As a complement to the known criterion of imperceptibility of disturbances in observations, the criterion of imperceptibility of correlation between the components of the observation vector has been formulated, which applies to each of the modules of the two-stage model. Assuming the structure of the observation error, being slightly developed as compared to the standard structure, the cases of meeting of each of the above criteria in those modules have been presented. Then, the relationship which combines measures of internal reliability for both the adjustment models under question has been given.
Go to article

Authors and Affiliations

Witold Prószyński
Download PDF Download RIS Download Bibtex

Abstract

Covid-19 pandemic is severely impacting worldwide. A line of research warned that facial occlusion may impair facial emotion recognition, whilst prior research highlighted the role of Trait Emotional Intelligence in the recognition of non-verbal social stimuli. The sample consisted of 102 emerging adults, aged 18-24 (M = 20.76; SD = 2.10; 84% females, 16% males) and were asked to recognize four different emotions (happiness, fear, anger, and sadness) in fully visible faces and in faces wearing a mask and to complete a questionnaire assessing Trait Emotional Intelligence. Results highlighted that individuals displayed lower accuracy in detecting happiness and fear in covered faces, while also being more inaccurate in reporting correct answers. The results show that subjects provide more correct answers when the photos show people without a mask than when they are wearing it. In addition, participants give more wrong answers when there are subjects wearing masks in the photos than when they are not wearing it. In addition, participants provide more correct answers regarding happiness and sadness when in the photos the subjects are not wearing the mask, compared to when they are wearing it. Implications are discussed.
Go to article

Authors and Affiliations

Marco Cannavò
1
ORCID: ORCID
Nadia Barberis
1
ORCID: ORCID
Rosalba Larcan
2
ORCID: ORCID
Francesca Cuzzocrea
1
ORCID: ORCID

  1. Università degli studi Magna Graecia Catanzaro, Italy
  2. Università degli studi di Messina, Messina, Italy
Download PDF Download RIS Download Bibtex

Abstract

Slope deformations, i.e., all types of landslides of rock masses (flow, creep, fall down, etc.), caused by gravitational forces, are the most widespread implementation of geological hazards and a negative geomorphological phenomenon that threatens the security of the population, destroy all utility values of the affected regions, negatively affects the environment, and cause considerable economic damage. Nowadays, the Global Navigation Satellite Systems (GNSS) provide accurate data for precise observations around the world due to the growing number of satellites from multiple operators, as well as more powerful and advanced technologies and the implementation of mathematical and physical models more accurately describing systematic errors that degrade GNSS observations such as ionospheric, tropospheric, and relativistic effects or multipath. The correct combination of measurement methods provides even more precise, i.e., better measurement results or estimates of unknown parameters. The combination of measurement procedures and their significant evaluations represent the essential attribute of deformation monitoring of landslides concerning the protection of the environment and the population’s safety in the interest areas for the sustainable development of human society. This article presents the establishment and use of a local geodetic network in particular local space for various needs. Depending upon the specific conditions, it is possible to use GNSS technology to obtain accurate observations and achieve the results applicable to the deformation survey for subsequent processing of the adjustment procedure.
Go to article

Authors and Affiliations

Gabriel Weiss
1
ORCID: ORCID
Slavomir Labant
1
ORCID: ORCID
Juraj Gasinec
1
ORCID: ORCID
Hana Stankova
2
ORCID: ORCID
Pavel Cernota
2
ORCID: ORCID
Erik Weiss
3
ORCID: ORCID
Roland Weiss
3
ORCID: ORCID

  1. Technical University of Kosice, Kosice, Slovakia
  2. VSB – Technical University of Ostrava, Ostrava, Czech Republic
  3. University of Economics in Bratislava, Bratislava, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

This introductory paper sets the scene for the special issue. It describes the rationale for the collection – which has to do with the multiple geopolitical, economic and health-related events of the past 30 years – and summarises some of the overarching changes in East–West migration dynamics within and beyond Europe over this period. However, this introductory article and the nine papers that follow also challenge and nuance the predominant East–West framing of recent intra-European migration. They identify numerous other trends: return migration and immigration into CEE countries, intra-CEE migrations and a range of issues relating to the impacts of migration on children and youth.
Go to article

Authors and Affiliations

Russell King
1
ORCID: ORCID
Laura Moroşanu
2
ORCID: ORCID
Mari-Liis Jakobson
3
ORCID: ORCID
Garbi Schmidt
4
ORCID: ORCID
Md Farid Miah
1
ORCID: ORCID
Raivo Vetik
3
ORCID: ORCID
Jenny Money
5

  1. Department of Geography, University of Sussex, UK
  2. Department of Sociology, University of Sussex, UK
  3. School of Governance, Law and Society, Tallinn University, Estonia
  4. Department of Communication and Arts, Roskilde University, Denmark
  5. Freelance; Visiting Researcher, University of Sussex, UK
Download PDF Download RIS Download Bibtex

Abstract

This article focuses on the interrelationship between homeland and diaspora at times of crisis. It adopts a comparative lens to look into diasporic (dis)engagement with the homeland, specifically analysing the cases of Greece and Ukraine. The main research issues are how crises affect the engagement between homeland and diaspora – taking Greece and Ukraine as case studies – and which the defining contextual factors are that transform the diaspora engagement. The article unpacks the homeland–diaspora nexus concerning two states with different socio-political backgrounds, both going through severe political and economic crises. In so doing, the article gives prominence to the differentiation between the en-gagement of the two different diasporas with their home countries at times of crisis. Evidence suggests substantial engagement in the Ukrainian case while, in the Greek case, a more mixed attitude – leaning towards disengagement – is apparent.

Go to article

Authors and Affiliations

Foteini Kalantzi
Iryna Lapshyna
Download PDF Download RIS Download Bibtex

Abstract

The prevalent conceptual approach used to assess multiple citizenship legislation is based on analysing a set of selected elements of the relevant legal framework. This paper argues that the evolution of legal rules on dual citizenship cannot be comprehensively analysed using methods created for comparative analyses and based on a narrow selection of legal rules that reflect either a restrictive or an open ap-proach to dual citizenship. The simplified approach that focuses on the analysis of selected fragments of explicit legislation generates results that may be misleading. Therefore, the terms of reference for comparative study of multiple citizenship should be elaborated and extended. A comprehensive compar-ative method also has to take into account the migration context as well as relevant aspects of the legal and political context. This article explores these issues through an analysis of Polish legal rules in the field of dual citizenship.

Go to article

Authors and Affiliations

Dorota Pudzianowska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Soil contamination with hydrocarbons represents a worldwide problem, especially for oil-rich countries.Soil contamination becomes inevitable due to different accidents, aboveground spills, and leakage, threatening the fauna and flora. The purpose of this study is to remediate One-year aged contaminated soil with crude oil (23490 mg/kg) using the fluidization technique in a laboratory-scale column. Free water and surfactant solutions were used for washing at different operating conditions. The efficiency of the method was evaluated by the calculation of the total petroleum hydrocarbons (TPH) removal ratio. Without the addition of surfactant, the cleaning operation was not sufficiently efficient, especially at room temperature where the removal ratio was only about 18%. Raising the liquid temperature leads to some improvement where the TPH removal ratio reached 49% at 50°C. With the use of solutions containing Sodium Laureth Sulfate (SLES) as a surfactant, an important enhancement of removal ratio was noted, along with an important reduction in operating time, washing solution volume, and energy consumption. The use of alternatively working/stopping operation mode contributes to the improvement of efficiency. TPH removal ratios up to 99% were obtained under some favorable conditions. This research shows encouraging results for expanding towards the industrial level with clean and sustainable resources
Go to article

Bibliography

  1. Arrar, J., Chekir, N. & Bentahar, F. (2007) Treatment of diesel fuel contaminated soil in jet-fluidized bed. Biochem. Eng. J. 37:131–138. DOI:10.1016/j.bej.2007.04.016
  2. Assawadithalerd, M. & Phasukarratchai, N. (2020) Optimization of Cadmium and Zinc Removal from Contaminated Soil by Surfactants Using Mixture Design and Central Composite Rotatable Design. Water Air Soil Pollut. 231:1–12. DOI:10.1007/s11270-020-04704-w
  3. Chaprão, M.J., Ferreira, I.N.S. & Correa, P.F. (2015) Application of bacterial and yeast biosurfactants for enhanced removal and biodegradation of motor oil from contaminated sand. Electron. J. Biotechnol. 18:471–479. DOI:10.1016/j.ejbt.2015.09.005
  4. EPA (1996) Method 3540C, soxhelet extraction. 283
  5. Fanaei, F., Moussavi, G. & Shekoohiyan, S. (2020) Enhanced treatment of the oil-contaminated soil using biosurfactant-assisted washing operation combined with H 2 O 2 -stimulated biotreatment of the effluent. J. Environ. Manage. 271:110941. DOI:10.1016/j.jenvman.2020.110941
  6. Gao, Y.C., Guo, S.H. & Wang, J.N. (2014) Effects of different remediation treatments on crude oil contaminated saline soil. Chemosphere 117:486–493. DOI:10.1016/j.chemosphere.2014.08.070
  7. Gautam, P., Bajagain, R. & Jeong, S.W. (2020) Combined effects of soil particle size with washing time and soil-to-water ratio on removal of total petroleum hydrocarbon from fuel contaminated soil. Chemosphere 250:126206. DOI:10.1016/j.chemosphere.2020.126206
  8. Gitipour, S., Hedayati, M. & Madadian, E. (2015) Soil Washing for Reduction of Aromatic and Aliphatic Contaminants in Soil. Clean - Soil, Air, Water 43:1419–1425. DOI:10.1002/clen.201100609
  9. Han, M., Ji, G. & Ni, J. (2009) Chemosphere Washing of field weathered crude oil contaminated soil with an environmentally compatible surfactant , alkyl polyglucoside. Chemosphere 76:579–586. DOI:10.1016/j.chemosphere.2009.05.003
  10. Hernández-Espriú, A., Sánchez-León. E., Martínez-Santos, P. & Torres, L.G. (2013) Remediation of a diesel-contaminated soil from a pipeline accidental spill: Enhanced biodegradation and soil washing processes using natural gums and surfactants. J. Soils Sediments 13:152–165. DOI:10.1007/s11368-012-0599-5
  11. Huang, Z., Wang, D. & Ayele, B.A. (2020) Enhancement of auxiliary agent for washing efficiency of diesel contaminated soil with surfactants. Chemosphere 252:126494. DOI:10.1016/j.chemosphere.2020.126494
  12. Huguenot, D., Mousset, E., Hullebusch, E.D. & Van Oturan, M.A. (2015) Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons. J. Environ. Manage. 153:40–47. DOI:10.1016/j.jenvman.2015.01.037
  13. Kuppusamy, S., Thavamani, P. & Venkateswarlu, K. (2017) Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere 168:944–968. DOI:10.1016/j.chemosphere.2016.10.115
  14. Lai, C.C., Huang, Y.C., Wei, Y.H. & Chang, J.S. (2009) Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J. Hazard. Mater. 167:609–614. DOI:10.1016/j.jhazmat.2009.01.017
  15. Lee, J.K., Kim, B.U. & Park, D. (1999) Thermal Treatment of Petroleum Contaminated Soils by a Fluidized Bed Desorber. Korean J. Chem. Eng. 16:684–687. DOI:10.1007/BF02708152
  16. Liu, J., Zhao, L. & Liu, Q. (2021) A critical review on soil washing during soil remediation for heavy metals and organic pollutants. Int. J. Environ. Sci. Technol. DOI:10.1007/s13762-021-03144-1
  17. Mebarka, D.H., Taleb, S. & Benghalem, A. (2012) Residue analysis of some PAHs in some algerian soil: A preliminary environmental impact assessment. Energy Procedia 18:1125–1134. DOI:10.1016/j.egypro.2012.05.127
  18. Niven, R.K. & Khalili, N. (1998) In situ multiphase fluidization (“upflow washing”) for the remediation of hydrocarbon contaminated sands. Can. Geotech. J. 35:938–960. DOI:10.1139/t98-067
  19. Olasanmi, I.O. & Thring, R.W. (2020) Evaluating rhamnolipid-enhanced washing as a first step in remediation of drill cuttings and petroleum-contaminated soils. J. Adv. Res. 21:79–90. DOI:10.1016/j.jare.2019.07.003
  20. Ortiz, I., Ávila-Chávez, M. & Torres, L. (2018) Removal of α- and β- Endosulfan from Soils by Using Natural and Synthetic Surfactants. Asian J. Environ. Ecol. 6:1–11. DOI:10.9734/ajee/2018/40009
  21. Ould Saadi, M. & Dounit, S. (2014) Lavage des sables contaminés par les hydrocarbures en colonne à lit fluidisé : Approche expérimentale. Déchets, Sci. Tech. DOI:10.4267/dechets-sciences-techniques.210
  22. Qi, B., Chen, Y. & Chen, D. (2021) Insight into Washing of Wet and Dry Crude Oil‐Contaminated Soil. CLEAN – Soil, Air, Water 2000440:2000440. DOI:10.1002/clen.202000440
  23. Rongsayamanont, W. & Tongcumpou, C. (2020) Diesel-Contaminated Soil Washing by Mixed Nonionic Surfactant Emulsion and Seed Germination Test. Water Air Soil Pollut. 231:267. DOI:10.1007/s11270-020-04649-0
  24. Saeedi, M., Li, L.Y. & Grace, J.R. (2019) Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from natural soil by combined non-ionic surfactants and EDTA as extracting reagents: Laboratory column tests. J. Environ. Manage. 248:109258. DOI:10.1016/j.jenvman.2019.07.029
  25. Urum, K. & Pekdemir, T. (2004) Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 57:1139–1150. DOI:10.1016/j.chemosphere.2004.07.048
  26. Urum, K., Pekdemir, T., Ross, D. & Grigson, S. (2005) Crude oil contaminated soil washing in air sparging assisted stirred tank reactor using biosurfactants. Chemosphere 60:334–343. DOI:10.1016/j.chemosphere.2004.12.038
  27. Viglianti, C., Hanna, K., De Brauer, C. & Germain, P. (2006) Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: Experimental study. Environ. Pollut. 140:427–435. DOI:10.1016/j.envpol.2005.08.002
  28. Vuruna, M., Veličković, Z. & Perić, S. (2017) The influence of atmospheric conditions on the migration of diesel fuel spilled in soil. Arch. Environ. Prot. 43:73–79. DOI:10.1515/aep-2017-0004
  29. Walker, A.I.T., Brown, V.K.H. & Ferrigan, L.W. (1967) Toxicity of sodium lauryl sulphate, sodium lauryl ethoxysulphate and corresponding surfactants derived from synthetic alcohols. Food Cosmet. Toxicol. 5:763–769. DOI:10.1016/S0015-6264(67)83275-9
  30. Zhang, W., Li, J. & Huang, G. (2011) An experimental study on the bio-surfactant-assisted remediation of crude oil and salt contaminated soils. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 46:306–313. DOI:10.1080/10934529.2011.539115
Go to article

Authors and Affiliations

Mohammed Aouf
1
ORCID: ORCID
Salah Dounit
1
ORCID: ORCID

  1. Laboratory of Génie des Procédés, Faculty of Applied Sscience, Kasdi Merbah University, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Many of the drugs used arc not completely metabolized in the human body and with urine and faces arc introduced into the sewage system. Finally, due to their incomplete removal during the conventional wastewater treatment process (CWTP), they can be released into the receiving water. One of the medicaments frequently detected in surface water is diclolcnac. The present study addresses the problem of diclofcnac removal in various aquatic samples using advanced oxidation processes (AOPs). The experiments were performed in distilled water and in biologically treated wastewater. The following AO Ps were applied: Fenlon 's reagent, UVand UV/H2O2-processes. The concentration of diclolcnac in distilled water corresponded to the concentration of this drug in human urine (ca. 20 mg-dm'). The real wastewater samples contained diclofcnac concentrations ranging from 630 to 790 ng-dm-'. The photodcgradation of diclolcnac was carried out in the photorcactor with a medium pressure Hg-vapor lamp (400 W). In the Fcnton's reaction different molar ratiosof H2O2/Fc'' were used. The diclotcnac mineralization (TOC removal) strictly depended on the amount of 1-1,0, applied in the Fcnton's reaction. Diclofcnac was rapidly degraded by direct photolysis (UV) and in UV/H2O2,-process both in distilled water and in wastewater samples. The results proved that the advanced oxidation processes arc cflcctive in diclofcnac removal from aquatic samples. The pseudo first order rate constants It)!' diclolcnac photodcgradation were determined.
Go to article

Authors and Affiliations

Ewa Felis
Jarosław Wiszniowski
Korneliusz Miksch
Download PDF Download RIS Download Bibtex

Abstract

In most production plants, waste heat is usually discharged into the environment, contributing to a reduction in the energy efficiency of industrial processes. This is often due to the low thermal parameters of the carriers in which this energy is contained, such as oils, water, exhaust gases or other post-process gases, which means that their use for electricity production in a conventional Rankine cycle may prove to be economically unprofitable. One of the technologies enabling the use of lowand medium-temperature waste heat carriers is the organic Rankine cycle (ORC) technology. The paper present results of calculations performed to evaluate potential electricity production in ORC using waste heat from a natural gas-fired glass melting furnace. The analysis was carried out assuming the use of a single-stage axial turbine, whose efficiency was estimated using correlations available in the literature. The calculations were carried out for three working fluids, namely hexamethyldisiloxane, dimethyl carbonate, and toluene for two scenarios, i.e. ORC system dedicated only to electricity production and ORC system working in cogeneration mode, where heat is obtain from cooling the condenser. In each of the considered cases, the ORC system achieves the net power output exceeding 300 kW (309 kW for megawatts in the cogenerative mode to 367 kW for toluene in the non-cogenerative mode), with an estimated turbine efficiency above 80%, in range of 80,75 to 83,78%. The efficiency of the ORC system, depending on the used working fluid and the adopted scenario, is in the range from 14.85 to 16.68%, achieving higher efficiency for the non-cogenerative work scenario.
Go to article

Bibliography

[1] Papapetrou M., Kosmadakis G., Cipollina A., La Commare U., Micale G.: Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country. Appl. Therm. Eng. 138(2018), 207–216.
[2] Forman C., Muritala I.K., Pardemann R., Meyer B.: Estimating the global waste heat potential. Renew. Sustain. Energ. Rev. 57(2016), 1568–1579.
[3] Szargut J., Ziebik A., KoziołJ., Kurpisz K., Majza E.: Industrial Waste Energy. Usage Rules. Devices. WNT, Warsaw 1993 (in Polish). [4] Tartiere T., Astolfi T.: A world overview of the organic Rankine cycle market. Energy Proced. 129(2017), 2–9.
[5] Tartiere T.: World overview of the organic Rankine cycle technology. https://orcworld- map.org/ (accessed: 18 July 2020).
[6] Da Lio L., Manente G., Branchini L., Lazzaretto A.: Predicting the optimum design of single stage axial expanders in orc systems: Is there a single efficiency map for different working fluids? Appl. Energ. 167(2016), 44–58.
[7] Elson A., Tidball R., Hampson A.: Waste heat to power market assessment. ICF International (2015). https://web.ornl.gov/sci/buildings/docs/ORNL%20TM-2014- 620%20Waste%20Heat%20to (accessed: 20 July 2020).
[8] Lu H.: Capturing the invisible resource: Analysis of waste heat potential in Chinese industry and policy options for waste heat to power generation. Lawrence Berkeley National Laboratory (Berkeley Lab.), 2015. https://china.lbl.gov/sites/ all/files/lbnl-179618.pdf (accessed: 08 Aug. 2020).
[9] Campana F., Bianchi M., Branchini L., De Pascale A., Peretto A., Baresi M., Fermi A., Rossetti N., Vescovo R.: ORC waste heat recovery in european energy intensive industries: Energy and ghg savings. Energ. Convers. Manage. 76(2013), 244–252.
[10] Klimaszewski P., Zaniewski D., Witanowski Ł., Suchocki T., Klonowicz P., Lampart P.: A case study of working fluid selection for a small-scale waste heat recovery ORC system. Arch. Thermodyn. 40(2019), 3, 159-180
[11] Mikielewicz D., Mikielewicz J.: Criteria for selection of working fluid in lowtemperature ORC. Chem. Process Eng. 37(2016), 3, 428–440.
[12] Sprouse III C., Depcik C.: Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery. Appl. Therm. Eng. 51(2013), 1–2, 711–722.
[13] Angelino G., di Paliano P.C.: Multicomponent working fluids for organic Rankine cycles (ORCs). Energy 23(1998), 6, 449–663.
[14] Preißinger M., Schwöbel J.A.H., Klamt A., Brüggemann D.: Multi-criteria evaluation of several million working fluids for waste heat recovery by means of Organic Rankine Cycle in passenger cars and heavy-duty trucks. Appl. Energ. 206(2017), 887–889.
[15] Ahmandi B., Golneshan A.A., Arasteh H., Karimipour A., Bach Q.: Energy and exergy analysis and optimization of a gas turbine cycle coupled by a bottoming organic Rankine cycle. J. Therm. Anal. Calorim. 141(2020), 495–510.
[16] Park D.W., Jeong E.S., Kim K.H., Bineesh K.V., Park S.W., Lee J.W.: Synthesis of dimethyl carbonate by transesterification of ethylene carbonate and methanol using quaternary ammonium salt catalysts. Stud. Surf. Sci. Catal. 159(2006), 329– 332.
[17] Therminol 66 Heat Transfer Fluid, Product description, https://www.therminol.com /product/71093438 (accessed: 22 Oct. 2020).
[18] Machi E., Astolfi M.: Organic Rankine Cycle (ORC) Power Systems, Technologies and Applications. Woodhead 2016.
[19] CHT Technika Chłodnicza Sp. z o.o., http://www.cht.server.pl/ (accessed 22 Apr. 2020).
[20] Van Rossum G., Drake F.L.: Python 3 Reference Manual. CreateSpace, Scotts Valley, CA, 2009.
[21] Bell I.H., Wronski J., Quoilin S., Lemort V.: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind. Eng. Chem. Res. 53(2014), 6, 2498–2508.
[22] Virtanen P. et al.: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 17(2020), 261–272, https://rdcu.be/b08Wh (accessed: 22 Oct. 2020).
Go to article

Authors and Affiliations

Arkadiusz Mateusz Musiał
1 2
Łukasz Antczak
1
Łukasz Jedrzejewski
3
Piotr Klonowicz
3

  1. Marani Sp. z o.o., Szybowa 14c, 41-808 Zabrze, Poland
  2. Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
  3. Institute of Fluid Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
Keywords Fan CFD Cyclorotor
Download PDF Download RIS Download Bibtex

Bibliography

[1] Morandini M., Xisto C., Pascoa J., Quaranta G., Gagnon L., Masarati P.: Aeroelastic analysis of a cycloidal rotor under various operating conditions. J. Aircraft. 55(2018), 4, 1675–1688.
[2] Muscarello V., Masarati P., Quaranta G., Georges T., Gomand J., Malburet F., Marilena P.: Instability mechanism of roll/lateral biodynamic rotorcraft–pilot couplings. J. Am. Helicopter Soc. 63(2018), 1–13.
[3] Xisto C. Leger J., Pascoa J., Gagnon L., Masarati P., Angeli D., Dumas A.: Parametric analysis of a large-scale cycloidal rotor in hovering conditions. J. Aerospace Eng. 30(2017), 1.
[4] Xisto C., Pascoa J., Abdollahzadeh M., Leger J., Masarati P., Gagnon L., Schwaiger M., Wills D.: PECyT – plasma enhanced cycloidal thruster. In: Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. July 28–30, 2014, Cleveland.
[5] Andrisani A., Angeli D., Dumas A.: Optimal pitching schedules for a cycloidal rotor in hovering. Aircr. Eng. Aerosp. Tec. 88(2016), 5.
[6] Xisto C., Pascoa J., Leger J.: Cycloidal rotor propulsion system with plasma enhanced aerodynamics. In: Proc. ASME 2014 Int.l Mechanical Engineering Congress and Exposition; Montreal, Nov. 14–20, 2014; V001T01A005.
[7] Xisto C., Pascoa J., Trancossi M.: Geometrical parameters influencing the aerodynamic efficiency of a small-scale self-pitch high solidity VAWT. J. Sol. Energy Eng. 138(2016), 031006.
[8] Benedict M.: Fundamental understanding of cycloidal-rotor concept for micro air vehicle applications. PhD thesis, Univ. Maryland, College Park, 2010.
[9] Benedict M., Ramasamy M., Chopra I.: Improving the aerodynamic performance of micro-air-vehicle-scale cycloidal rotor: An experimental approach. J. Aircraft 47(20104), 1117–1125.
[10] Heimerl J., Halder A., Benedict M.: Experimental and computational investigation of a UAV-scale cycloidal rotor in forward flight. In: Proc. The Vertical Flight Society’s 77th Ann. Vertical Flight Society Forum and Technology Display, The Future of Vertical Flight, Virtual, May 10–14, 2021.
[11] Halder A., Benedict M.: Nonlinear aeroelastic coupled trim analysis of a twin cyclocopter in forward flight. AIAA J., 59, 2021, 305–319.
[12] Lee B., Saj V., Benedict M., Kalathil D.: A Vision-Based Control Method for Autonomous Landing Of Vertical Flight Aircraft On A Moving Platform Without Using GPS. In: Proc. The Vertical Flight Society’s, 76th Ann. Forum and Technology Display, Virtual, Oct. 5–8, 2020.
[13] Denton H., Benedict M., Kang H., Hrishikeshavan V.: Design, development and flight testing of a gun-launched rotary-wing micro air vehicle. In: Proc. The Vertical Flight Society’s, 76th Ann. Forum and Technology Display, Virtual, Oct. 5–8, 2020.
[14] Halder A., Benedict M.: Understanding upward scalability of cycloidal rotors for large-scale UAS applications. In: Proc. Aeromechanics for Advanced Vertical Flight Technical Meeting 2020, Transformative Vertical Flight 2020, San Jose, 21–23 Jan. 2020, 311–330.
[15] Runco C., Benedict M.: Flight dynamics model identification of a meso-scale twin-cyclocopter in hover. Paper presented at the 77th Ann. Vertical Flight Society Forum and Technology Display, The Future of Vertical Flight, Virtual, May 10-14, 2021.
[16] Runco C., Coleman D., Benedict M.: Design and development of a 30 g cyclocopter. J. Am. Helicopter Soc. 64(2019), 1.
[17] Coleman D., Halder A., Saemi F., Runco C., Denton H., Lee B., Benedict M.: Development of “Aria”, a compact, ultra-quiet personal electric helicopter. In: Proc. 77th Annual Vertical Flight Society Forum and Technology Display, FORUM 2021: The Future of Vertical Flight, Virtual, May 10–14, 2021.
[18] Koschorrek P., Siebert Ch., Haghani A., Jeinsch T.: Dynamic positioning with active roll reduction using Voith Schneider propeller. IFAC-PapersOnLine, 48(2015), 16, 178–183.
[19] Schubert A., Koschorrek P., Kurowski M., Lampe B., Jeinsch T.: Roll damping using Voith Schneider propeller a repetitive control approach. IFACPapersOnLine 49(2016), 23, 557–561.
[20] Hahn T., Koschorrek P., Jeinsch T.: Parameter estimation of wave-induced oscillatory ship motion for wave filtering in dynamic positioning. IFAC-PapersOnLine 51(2018), 29, 183–188.
[21] Hashem I., Mohamed M.H.: Aerodynamic performance enhancements of H-rotor Darrieus wind turbine. Energy 142(2018), 531–545
[22] Siegel S.: Numerical benchmarking study of a cycloidal wave energy converter. Renew. Energ. 134(2019), 390–405.
[23] Siegel S.: Wave radiation of a cycloidal wave energy converter. Appl. Ocean Res. 49(2015), 9–19.
[24] Bianchini A., Balduzzi F., Rainbird J., Peiro J., Graham M., Ferrara G.: An experimental and numerical assessment of airfoil polars for use in Darrieus wind turbines – Part I: Flow curvature effects. J. Eng. Gas Turb. Power 138(2016), 032602-1.
[25] Dykas S., Majkut M., Smołka K., Strozik M., Chmielniak T., Stasko T.: Numerical and experimental investigation of the fan with cycloidal rotor. Mech. Mechanical Eng. 22(2018), 2, 447–454.
[26] Stasko T., Dykas S., Majkut M., Smołka K.: An attempt to evaluate the cycloidal rotor fan performance, Open J. Fluid Dyn. 9(2019), 292–30.
[27] Shyy W., Lian Y., Tang J., Viieru D., Liu H.: Aerodynamics of Low Reynolds Flyers. Cambridge Univ. Press, 2008.
[28] Ansys Fluent User Guide 2020 R1. Ansys, Canonsburg 2020.
[29] Shrestha E., Yeo D., Benedict M., Chopra I.: Development of a meso-scale cycloidal-rotor aircraft for micro air vehicle application. Int. J. Micro Air Veh. 9(2017), 3.
[30] Augusto J., Monteiro L., Pascoa J., Xisto C.: Aerodynamic optimization of cyclorotors. Aircraft Eng. Aerosp. Tec. 88(2016), 2.
Go to article

Authors and Affiliations

Tomasz Staśko
1
Mirosław Majkut
1
Sławomir Dykas
1
Krystian Smołka
1

  1. Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the result of hydrogeological studies of Lublin Coal Basin (LCB), particularly at Jurassic level. It is arranged in several parts: I) stratigraphy, tectonics and lithology of Jurassic system at LCB territory, 2) groundwater dynamics, 3) chemical composition of waters, 4) hyclrogeochemical stability conditions. The paper also suggests a few main directions of using the Jurassic waters in prophylaxis and therapy of many diseases. The waters, containing considerably elevated quantities of fluorine compounds come from Jurassic formation lying at the considerable depth. Coal mine joins them with saline Carboniferous waters. After pretreatment, they are discharged to the surface ancl to the river. Jurassic waters belong to the group of low mineralised waters. They contain 6-1 I mg F/dm3 fluorides. Thus they can be usefu I in prophylactics of teeth ancl paradental illnesses, particularly in risk groups. Thanks to, fluorides contained in these waters they can be used during and after treatment and to support surgical operations or rehabilitation effects.
Go to article

Authors and Affiliations

Małgorzata Ciosmak
Download PDF Download RIS Download Bibtex

Abstract

This research deals with the development of an optimization system to minimize employee noise exposure in the work environment. It is known from the literature that continuous exposure to high noise levels can cause heart overload, stress, fatigue, and increase accident numbers at a production line. Thus, it is necessary to develop acoustic solutions at an industrial level that could minimize failures and accident occurrences. The rules that regulate occupational noise exposures allow an assessment of the degrees of exposure and subsequent corrections of working conditions. It is observed that the exposure is necessary for further evaluation and correction. Therefore, this research proposes to simulate occupational noise exposure conditions through mathematical models implemented in C++, using the GUROBI linear optimization package and to act previously to minimize ONIHL (Occupational Noise-Induced Hearing Loss). One of this work results is based on Doses Values, TWA (Time Weighted Average) and Distances Covered, using these three factors simultaneously through the optimization, it obtains a route that minimizes exposure and avoids ONIHL. Although there is a need for balanced doses between employees, to this end, the Designation Problem was implemented. Thus, with the routes obtained by optimization, an efficient allocation task was made for the maintenance crew, resulting in minimized and balanced doses. This model was applied to a real industrial plant that will not be identified, only methodology and results obtained will be presented.
Go to article

Authors and Affiliations

Déborah Reis
1
João Miranda
1
Jorge Reis
1
Marcus Duarte
1

  1. Department of Mechanics, Faculty of Mechanical Engineering, UFU Universidade Federal de Uberlândia, Uberlândia, Brazil
Download PDF Download RIS Download Bibtex

Abstract

The ultrasound (US) imaging market is fast-changing in terms of needs, trends and tendencies as it undergoes rapid innovations. Due to technological improvements, a variety of US probe types is available to cover a wide range of clinical applications. The aim of this paper is to provide information to healthcare professionals to select the appropriate probe for the intended use and the desired performance/price ratio. This work describes the majority of conventional, special and unique US probe types currently available on the market, together with technological insights that are responsible for image quality and a list of some of their clinical applications. The description of the inner transducer technologies allows to understand what contributes to different prices, features, quality level and breadth of applications. The comparison of current US probes and the analysis of advanced performances arising from the latest innovations, may help physicians, biomedical and clinical engineers, sonographers and other stakeholders with purchasing and maintenance commitments, enabling them to select the appropriate probe according to their clinical and economical needs.
Go to article

Authors and Affiliations

Ramona De Luca
1
Leonoardo Forzoni
1
Francesca Gelli
1
Jeffrey Bamber
2

  1. Esaote S.p.A. Florence, 50127, Italy
  2. Institute of Cancer Research and Royal Marsden NHS Foundation Trust London, SM2 5NG, United Kingdom

This page uses 'cookies'. Learn more