Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Upper Turonian to lower Coniacian marls of the Strehlen Formation of the Graupa 60/1 core were investigated for their foraminiferal content to add stratigraphical and palaeoenvironmental information about the transitional facies zone of the Saxonian Cretaceous Basin. Further comparison with foraminiferal faunas of the Brausnitzbach Marl (Schrammstein Formation) were carried out to clarify its relationship to the marls of the Graupa 60/1 core. Tethyan agglutinated marker species for the late Turonian to early Coniacian confirm the proposed age of the marls of the Graupa 60/1 core and the Brausnitzbach Marl. The palaeoenvironment of the marls reflects middle to outer shelf conditions. The maximum flooding zones of genetic sequences TUR6, TUR7 and CON1 could be linked to acmes of foraminiferal species and foraminiferal morphogroups. In general, a rise of the relative sea-level can be recognised from the base to the top of the marls of the Graupa 60/1 core. While agglutinated foraminiferal assemblages suggest a generally high organic matter influx and variable but high productivity in the Graupa 60/1 core, the Brausnitzbach Marl deposition was characterized by moderate productivity and a generally shallower water depth.
Go to article

Authors and Affiliations

Richard M. Besen
1
Mareike Achilles
2
Mauro Alivernini
2
Thomas Voigt
2
Peter Frenzel
2
Ulrich Struck
3 4

  1. Freie Universität Berlin, Institut für Geologische Wissenschaften, Malteserstraße 74-100, 12249 Berlin, Germany
  2. Friedrich Schiller University of Jena, Institute of Earth Sciences, Burgweg 11, 07749 Jena, Germany
  3. Freie Universität Berlin, Institut für Geologische Wissenschaften, Malteserstraße 74-100, 12249 Berlin
  4. Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstrasse 43, 10115 Berlin, Germany
Download PDF Download RIS Download Bibtex

Abstract

Twelve glaciers, representing various types, were investigated between 2000 and 2005, in a region adjacent to the northern reaches of Billefjorden, central Spitsbergen ( Svalbard ). On the basis of measurements taken using reference points, DGPS and GPS systems, analyses of aerial photographs and satellite images, geomorphological indicators and archival data their rates of deglaciation following the “Little Ice Age” (LIA) maximum were calculated variously on centennial, decadal and annual time scales. As most Svalbard glaciers have debris-covered snouts, a clean ice margin was measured in the absence of debris-free ice front. The retreat rates for both types of ice fronts were very similar. All studied glaciers have been retreating since the termination of the Little Ice Age at the end of 19th century. The fastest retreat rate was observed in the case of the Nordenskiöldbreen tidewater glacier (mean average linear retreat rate 35 m a-1). For land-terminating glaciers the rates were in range of 5 to 15 m a-1. Presumably owing to climate warming, most of the glacier retreat rates have increased several fold in recent decades. The secondary factors influencing the retreat rates have been identified as: water depth at the grounding line in the case of tidewater glaciers, surging history, altitude, shape and aspect of glacier margin, and bedrock relief. The retreat rates are similar to glaciers from other parts of Spitsbergen . Analyses of available data on glacier retreat rates in Svalbard have allowed us to distinguish four major types: very dynamic, surging tidewater glaciers with post-LIA retreat rates of between 100 and 220 m a-1, other tidewater glaciers receding of a rate of 15 to 70 m a-1, land terminating valley polythermal glaciers with an average retreat of 10 to 20 m a-1 and small, usually cold, glaciers with the retreat rates below 10 m a-1.

Go to article

Authors and Affiliations

Grzegorz Rachlewicz
Witold Szczuciński
Marek Ewertowski

This page uses 'cookies'. Learn more