Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The FEM simulations of the ECAP including real conditions of the process – the friction between the metal extruded and the die walls, as well as, the channels rounding, were done here in two scales – macro- and micro-. The macroscopic analyses were done for isotopic material with a non-linear hardening using the UMAT user material procedure. The pure Lagrangian approach was applied here. The stress, strains and their increments, as well as, the deformation gradient tensor were recorded for selected finite elements in each calculation step. The displacements obtained in the macroscopic FEM analysis are then used as the kinematic input for the polycrystalline structure. The dislocation slip was included as the source of the plastic deformation here for the face-centered cubic structure. The results obtained with the use of the crystal plasticity show the heterogeneous distribution of stress and strain within the material associated with the grains anisotropy. The results in both micro- and macro- scales are coincident. The FEM analyses show the potential of the application of the crystal plasticity approach for solving elastic-plastic problems including the material forming processes.
Go to article

Authors and Affiliations

Marta Wójcik
1
ORCID: ORCID

  1. Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Materials Forming and Processing, 8 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present investigation aims at fabricating a functionally graded Al-6Cr-Y2O3 composite and its microstructural and property characterization. Al-6Cr-alloys with varying percentage of Y2O3 (5-10 vol. %) have been used to fabricate FGM by powder metallurgy route. The samples were subsequently subjected to solution treatment at 610°C for 4 h followed by artificially aged at 310°C for 4 h. The microstructure, hardness and wear behavior of these FGM have been evaluated. FGM exhibited superior hardness (360 ± 5 VHN) as compared to the unprocessed composites (220 ± 5 VHN) due to the uniform dispersion of Y2O3 particles. Wear resistance of Al-6Cr-10 Y2O3 FGM were compared that of with pure Al-6Cr alloy by dry abrasive wear test. Al-6Cr-10 Y2O3 FGM composites were found to exhibit higher wear resistance with the minimum wear rate of 0.009 mm3/m compared to the Al- 6Cr alloy wear rate 0.02 mm3/m.

Go to article

Authors and Affiliations

T. Satish Kumar
K. Krishna Kumar
S. Shalini
R. Subramanian

This page uses 'cookies'. Learn more