Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Cyanobacterials (Cyanophyta) belong to phytoplancton. In normal stale concentration of cyanobacterial cells in water rangs between a few hundreds to a few thousands in I drn' of water but while blooming may be increased even to one million in I dm3. At this time water has characteristic color, depending on dominated species. Also characteristic smell is the results of the presence ofcyanobacterial and phytoplankton cells producing odour substances. The cyanobacterial blooms are very important hygienic problem for both human and animal health. While blooming they form foams and head coating on water surface. Also cyanobacterial toxins are huge problem. Cyanobacteria may produce acute toxins such as hepatotoxic peptides (microcystins, nodularins and cylindrospermopsin) and neurotoxic alkaloids (anatoxin-a, anatoxin-a(s), homoanatoxin and aphanotoxins). Cyanobacterial toxins are very dangerous substances which can intoxicate hepatocytes and the nervous system in humans and animals. In this situation it is very important to remove them effectively in water pretreatment processes. In the present paper have been presented for the first time in Poland data on removing cyanobacterial toxins from water in pretreatment process with application of chlorine dioxide and ozone on the example of Sulejów - Łódź water pipe system. In period I 998-200 I the effectiveness rnicrocystin-LR removal ranged between 74--92% while for other izoforms they were between 45-94%.
Go to article

Authors and Affiliations

Andrzej K.M. Kabziński
Helena Grabowska
Jerzy Cyran
Renata Juszczak
Józef Dziegieć
Alicja Zawadzka
Dominik Szczukocki
Konrad Szczytowski
Download PDF Download RIS Download Bibtex

Abstract

Reactive distillation (RD) has already demonstrated its potential to significantly increase reactant conversion and the purity of the target product. Our work focuses on the application of RD to reaction systems that feature more than one main reaction. In such multiple-reaction systems, the application of RD would enhance not only the reactant conversion but also the selectivity of the target product. The potential of RD to improve the product selectivity of multiple-reaction systems has not yet been fully exploited because of a shortage of available comprehensive experimental and theoretical studies. In the present article, we want to theoretically identify the full potential of RD technology in multiple-reaction systems by performing a detailed optimisation study. An evolutionary algorithm was applied and the obtained results were compared with those of a conventional stirred tank reactor to quantify the potential of RD to improve the target product selectivity of multiple-reaction systems. The consecutive transesterification of dimethyl carbonate with ethanol to form ethyl methyl carbonate and diethyl carbonate was used as a case study.

Go to article

Authors and Affiliations

Tobias Keller
Bjoern Dreisewerd
Andrzej Górak

This page uses 'cookies'. Learn more