Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents investigations of microstructure of varistors of damaged surge arrester counters. A similar ZnO varistor, not subjected before to operation, was a point of reference in this research. The results of investigations of the ZnO varistors show an untypical phase composition of their material, which was characterized by unsatisfying homogeneity and cohesion. The degradation processes of varistor material in the subsequent stages were recognized and described. A harmful impact of humidity inside the untight surge arrester counter on its operation and its ZnO varistors was proved. Some conclusions being the result of the operation checking of surge arrester counters were presented too.

Go to article

Authors and Affiliations

P. Papliński
J. Wańkowicz
P. Ranachowski
Z. Ranachowski
Download PDF Download RIS Download Bibtex

Abstract

In this article, synthesis, electronic and optical properties of an N-cyclohexyl-acrylamide (NCA) molecule are described based on different solvent environments and supported by theoretical calculations. Theoretical calculations have been carried out using a density function theory (DFT). Temperature dependence of the sample electrical resistance has been obtained by a four-point probe technique. Experimental and semi-theoretical parameters such as optical density, transmittance, optical band gap, refractive index of the NCA for different solvents were obtained. Both optical values and electrical resistance values have shown that NCA is a semiconductor material. The values of HOMO and LUMO energy levels of the headline molecule indicate that it can be used as the electron transfer material in OLEDs. All results obtained confirm that the NCA is a candidate molecule for OLED and optoelectronic applications.

Go to article

Authors and Affiliations

E. Tanış
N. Çankaya

This page uses 'cookies'. Learn more