Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Hydrogen as a raw material finds its main use and application on the Polish market in the chemical industry. Its potential applications for the production of energy in fuel cell systems or as a fuel for automobiles are widely analyzed and commented upon ever more frequently. At present, hydrogen is produced worldwide mainly from natural gas, using the SMR technology or via the electrolysis of water. Countries with high levels of coal resources are exceptional in that respect, as there the production of hydrogen is increasingly based on gasification processes. China is such an example. There some 68% of hydrogen is generated from coal. The paper discusses the economic efficiency of hydrogen production technologies employing lignite gasification, comparing it with steam reforming of natural gas technology (SMR). In present Polish conditions, this technology seems to be the most probable alternative for natural gas substitution.

For the purpose of evaluating the economic efficiency, a model has been developed, in which a sensitivity analysis has been carried out. An example of the technological process of energy-chemical processing of lignite has been presented, based on the gasification process rooted in disperse systems, characteristics of the fuel has been discussed, as well as carbon dioxide emission issues. Subsequently, the assumed methodology of economic assessment has been described in detail, together with its key assumptions. Successively, based on the method of discounted cash flows, the unit of hydrogen generation has been determined, which was followed by a detailed sensitivity analysis, taking the main risk factors connected with lignite/coal and natural gas price relations, as well as the price of carbon credits (allowances for emission of CO2) into account.

Go to article

Authors and Affiliations

Michał Kopacz
ORCID: ORCID
Radosław Kapłan
Krzysztof Kwaśniewski
Download PDF Download RIS Download Bibtex

Abstract

As the dynamic behavior of the concrete is different from that under static load, this research focuses on the study of dynamic responses of concrete by simulating the split Hopkinson pressure bar (SHPB) test. Finite element code LS-DYNA is used for modeling the dynamic behaviors of concrete. Three continuous models are reviewed and the Holmquist-Johnson-Cook model (HJC) is introduced in detail. The HJC model which has been implemented in LS-DYNA is used to represent the concrete properties. The SHPB test model is established and a few stress waves are applied to the incident bar to simulate the dynamic concrete behaviors. The stress-strain curves are obtained. The stress distributions are analyzed. The crack initiation and propagation process are described. It is concluded that: the HJC model can modeling the entire process of the fracture initiation and fragmentation; the compressive of the concrete is significantly influenced by the strain rates.

Go to article

Authors and Affiliations

H.M. An
L. Liu
Download PDF Download RIS Download Bibtex

Abstract

The text is devoted to the description of the methodology and research by design conducted to determine the functional and spatial solutions of a high-rise building complex located inWarsawfavoring connections with the public space of the city. The research work was carried out in the following phases: pre-design, including analyses and studies, context analysis, data collection, and design phase including defining initial conceptual variants, developed conceptual variants, selection, and determination of the final variant of the concept of functional and spatial structure for further investment and design steps. The final solutions adopted in the described process in the realization of the complex and detailed execution designs were also indicated. Design research was done through iteration of solutions, critical analysis, and functional optimization. The final solution was the division of the stylobate part of the complex, following the pedestrian traffic analysis, into three investment parts and the introduction of a rich program of supplementary functions for the dominant office function. A complex program of supplementary functions: trade, entertainment and event space, medical functions, gastronomic parts.
Go to article

Authors and Affiliations

Marcin Goncikowski
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Architecture, ul. Koszykowa 55, 00-659 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Antarctica features one of the most ancient, largest glacier reserves and the most pristine environment left on the earth. However, in last few decade disturbances due to industrialization and release of greenhouse gases have led to serious consequences such as melting of polar ice sheets, changing atmospheric chemistry and ozone depletion. Here, we use high-throughput sequencing to understand the impact of subtle changes in environmental parameters on bacterial communities. We observed dominance of Cyanobacteria (41.93%) followed by Bacteroidetes (14.8%), Acidobacteria (13.35%), Proteobacteria (9.67%), Actinobacteria (7.79%), Firmicutes (3.46%) among all the samples collected every alternate day for 20 days. Additionally, metagenomic imputations revealed higher abundance of gene families associated with DNA repair and carotenoid biosynthesis enabling bacterial communities to resist and function under the high UV radiations. We further observed bacterial communities are dependent on the single carbon metabolism as a strategy for nutrient uptake in such nutrient deprived conditions.
Go to article

Bibliography


Almela P., Justel A. and Quesada A. 2021. Heterogeneity of microbial communities in soils from the Antarctic Peninsula region. Frontiers in Microbiology 12: 280.
Arrage A.A., Phelps T.J., Benoit R.E. and White D.C. 1993. Survival of subsurface microorganisms exposed to UV radiation and hydrogen peroxide. Applied and Environmental Microbiology 59: 3545–3550
Blumthaler M. 2007. Factors, trends and scenarios of UV radiation in arctic-alpine environments. In: Ørbæk J.B., Kallenborn R., Tombre I., Hegseth E.N., Falk-Petersen S. and Hoel A.H. (eds.) Arctic Alpine Ecosystems and People in a Changing Environment. Springer, Berlin, Heidelberg.
Caldwell M.M., Bornman J.F., Ballaré C.L., Flint S.D. and Kulandaivelu G. 2007. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochemical & Photobiological Sciences 6: 252–266.
Callahan B.J., Mcmurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A. and Holmes S.P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13: 581–583.
Caporaso J.G., Lauber C.L., Walters W.A., Berg-Lyons D., Lozupone C.A., Turnbaugh P.J., Fierer N. and Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America 108 (Supl. 1): 4516–4522.
Carpenter L.G., Reimann S., Burkholder J.B., Clerbaux C., Hall B.D., Hossaini R., Laube J.C. and Yvon-Lewis S.A. 2014. Scientific Assessment of Ozone Depletion: 2014. World Meteorological Organization Geneva 10.
Chen W., Liu H., Wurihan, Gao Y., Card S.D. and Ren A. 2017. The advantages of endophyte- infected over uninfected tall fescue in the growth and pathogen resistance are counteracted by elevated CO2. Scientific Reports 7: 6952.
Cid F.P., Inostroza N.G., Graether S.P., Bravo L.A. and Jorquera M.A. 2016. Bacterial community structures and ice recrystallization inhibition activity of bacteria isolated from the phyllosphere of the Antarctic vascular plant Deschampsia antarctica. Polar Biology 40: 1319–1331.
Davey M.C. and Pickup J. 1992. Temperature variation and its biological significance in fellfield habitats on a maritime Antarctic island. Antarctic Science 4: 383–388.
Davis P.L. 2016. Antarctic moss is home to many epiphytic bacteria that secrete antifreeze proteins. Environmental Microbiology Reports 8: 1–2.
Dieser M., Greenwood M. and Foreman C.M. 2010. Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arctic, Antarctic, and Alpine Research: An Interdisciplinary Journal 4: 396–405.
Douglas G.M., Maffei V.J., Zaneveld J.R., Yurgel S.N., Brown J.R., Taylor C.M., Huttenhower C. and Langille M.G.I. 2020. PICRUSt2 for prediction of metagenome functions. Nature Biotechnology 38: 685–688.
Fernández Zenoff V., Siñeriz F. and Farías M.E. 2006. Diverse responses to UV-B radiation and repair mechanisms of bacteria isolated from high-altitude aquatic environments. Applied and Environmental Microbiology 72: 7857–7863.
George S. F., Fierer N., Levy J. S. and Adams B. 2021. Antarctic water tracks: Microbial community responses to variation in soil moisture, pH, and salinity. Frontiers in Microbiology 12: 616730
Hughes K.A., Lawley B. and Newsham K.K. 2003. Solar UV-B radiation inhibits the growth of Antarctic terrestrial fungi. Applied and Environmental Microbiology 69: 1488–1491.
Jani K., Ghattargi V., Pawar S., Inamdar M., Shouche Y. and Sharma A. 2018a. Anthropogenic activities induce depletion in microbial communities at urban sites of the River Ganges. Current Microbiology 75: 79–83.
Jani K., Dhotre D., Bandal J., Shouche Y., Suryavanshi M., Rale V. and Sharma A. 2018b. World’s largest mass bathing event influences the bacterial communities of Godavari, a Holy River of India. Microbial Ecology 76: 706–718.
Kajale S., Jani K. and Sharma A. 2021. Contribution of archaea and bacteria in sustaining climate change by oxidizing ammonia and sulphur in an Arctic Fjord. Genomics 113: 1272– 1276.
Langille M.G.I., Zaneveld J., Caporaso J.G., Mcdonald D., Knights D., Reyes J.A., Clemente J.C., Burkepile D.E., Vega Thurber R.L., Knight R., Beiko R.G. and Huttenhower C. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology 31: 814–821.
Lim P.P., Pearce D.A., Convey P., Lee L.S., Chan K.G. and Tan G.Y.A. 2020. Effects of freeze-thaw cycles on High Arctic soil bacterial communities. Polar Science 23: 100487.
Louca S., Polz M.F., Mazel F., Albright M.B.N., Huber J.A., O’Connor M.I., Ackermann M., Hahn A.S., Srivastava D.S., Crowe S.A., Doebeli M. and Parfrey L.W. 2018. Function and functional redundancy in microbial systems. Nature Ecology and Evolution 2: 936 –943.
Lüder U.H. and Clayton M.N. 2004. Induction of phlorotannins in the brown macroalga Ecklonia radiata (Laminariales, Phaeophyta) in response to simulated herbivory – The first microscopic study. Planta 218: 928–937.
Lütz C., Di Piazza L., Fredersdorf J. and Bischof K. 2016. The effect of ultraviolet radiation on cellular ultrastructure and photosystem II quantum yield of Alaria esculenta (L.) Greville from Spitsbergen (Norway). Polar Biology 39: 1957–1966.
Malard L.A., Šabacká M., Magiopoulos I., Mowlem M., Hodson A., Tranter M., Siegert M.J. and Pearce D.A. 2019. Spatial variability of Antarctic surface snow bacterial communities. Frontiers in Microbiology 10: 461.
Manney G.L., Santee M.L., Rex M., Livesey N.J., Pitts M.C., Veefkind P., Nash E.R., Wohltmann I., Lehmann R., Froidevaux L., Poole L.R., Schoeberl M.R., Haffner D.P., Davies J., Dorokhov V., Gernandt H., Johnson B., Kivi R., Kyrö E., Larsen N., Levelt P.F., Makshtas A., Mcelroy C.T., Nakajima H., Parrondo M.C., Tarasick D.W., Von Der Gathen P., Walker K.A. and Zinoviev N.S. 2011. Unprecedented Arctic ozone loss in 2011. Nature 478: 469–475.
Molina-Montenegro M.A., Ballesteros G.I., Castro-Nallar E., Meneses C., Gallardo-Cerda J. and Torres-Díaz C. 2019. A first insight into the structure and function of rhizosphere microbiota in Antarctic plants using shotgun metagenomics. Polar Biology 42:1825–1835.
Newsham K.K., Tripathi B.M., Dong K., Yamamoto N., Adams J.M. and Hopkins D.W. 2019. Bacterial community composition and diversity respond to nutrient amendment but not warming in a maritime Antarctic soil. Microbial Ecology 78: 974–984.
Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O’hara R.B., Simpson G.L., Solymos P., Stevens M.H.H. and Wagner H. 2013. Vegan: Community Ecology Package. R package version 2.0-10. http://cran.r-project.org/package=vegan, R Package. Ver. 2.0–8.
Pérez V., Hengst M., Kurte L., Dorador C., Jeffrey W.H., Wattiez R., Molina V. and Matallana- Surget S. 2017. Bacterial survival under extreme UV radiation: A comparative proteomics study of Rhodobacter sp., isolated from high altitude wetlands in Chile. Frontiers in Microbiology 8: 1173.
Peter H. and Sommaruga R. 2016. Shifts in diversity and function of lake bacterial communities upon glacier retreat. The ISME Journal 10: 1545–1554.
Pichrtová M., Remias D., Lewis L.A. and Holzinger A. 2013. Changes in phenolic compounds and cellular ultrastructure of Arctic and Antarctic strains of Zygnema (Zygnematophyceae, Streptophyta) after exposure to experimentally enhanced UV to PAR ratio. Microbial Ecology 65: 68–83.
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J. and Glöckner F.O. 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research 41(Database issue): D590–D596.
Ramos L., Vollú R., Jurelevicius D., Rosado A. and Seldin L. 2019. Firmicutes in different soils of Admiralty Bay, King George Island, Antarctica. Polar Biology 42: 2219–2226.
Rastogi G., Sbodio A., Tech J.J., Suslow T. V., Coaker G.L. and Leveau J.H.J. 2012. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composi- tion on field-grown lettuce. The ISME Journal 6: 1812–1822.
Reis-Mansur M.C.P.P., Cardoso-Rurr J.S., Silva J.V.M.A., De Souza G.R., Cardoso V. Da S., Mansoldo F.R.P., Pinheiro Y., Schultz J., Lopez Balottin L.B., Da Silva A.J.R., Lage C., Dos Santos E.P., Rosado A.S. and Vermelho A.B. 2019. Carotenoids from UV-resistant Antarctic Microbacterium sp. LEMMJ01. Scientific Reports 9: 9554.
Rodriguez H., Rivas J., Guerrero M.G. and Losada M. 1989. Nitrogen-Fixing Cyanobacterium with a High Phycoerythrin Content. Applied and Environmental Microbiology 55: 758–760.
Rojas J.L., Martín J., Tormo J.R., Vicente F., Brunati M., Ciciliato I., Losi D., Van Trappen S., Mergaert J., Swings J., Marinelli F. and Genilloud O. 2009. Bacterial diversity from benthic mats of Antarctic lakes as a source of new bioactive metabolites. Marine Genomics 2: 33–41.
Schmidt É.C., Nunes B.G., Maraschin M. and Bouzon Z.L. 2010. Effect of ultraviolet-B radiation on growth, photosynthetic pigments, and cell biology of Kappaphycus alvarezii (Rhodophyta, Gigartinales) macroalgae brown strain. Photosynthetica 48: 161–172.
Sharma A., Jani K., Shouche Y.S. and Pandey A. 2014 Microbial diversity of the Soldhar hot spring, India, assessed by analyzing 16S rRNA and protein-coding genes. Annals of Microbiology 65: 1323–1332.
Sharma A., Paul D., Dhotre D., Jani K., Pandey A. and Shouche Y.S. 2017. Deep sequencing analysis of bacterial community structure of Soldhar hot spring, India. Microbiology (Russian Federation) 86: 136–142.
Sharma A., Jani K., Da Feng G., Karodi P., Vemuluri V.R., Zhu H.H., Shivaji S., Thite V., Kajale S., Rahi P. and Shouche Y. 2018. Subsaxibacter sediminis sp. nov., isolated from arctic glacial sediment and emended description of the genus Subsaxibacter. The International Journal of Systematic and Evolutionary Microbiology 68: 1678–1682.
Sharma A., Jani K., Thite V., Dhar S.K. and Shouche Y. 2019. Geochemistry shapes bacterial communities and their metabolic potentials in tertiary coalbed. Geomicrobiology Journal 36: 1678–1682.
Steinhoff F.S., Wiencke C., Müller R. and Bischof K. 2008. Effects of ultraviolet radiation and temperature on the ultrastructure of zoospores of the brown macroalga Laminaria hyperborean. Plant Biology 10: 388–397.
Teixeira L.C.R.S., Peixoto R.S., Cury J.C., Sul W.J., Pellizari V.H., Tiedje J. and Rosado A.S. 2010. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. The ISME Journal 4: 989–1001.
Tian B. and Hua Y. 2010. Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria. Trends in Microbiology 18: 512–520.
Wang Q., Garrity G.M., Tiedje J.M. and Cole J.R. 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73: 5261–5267.
Warnecke F., Sommaruga R., Sekar R., Hofer J.S. and Pernthaler J. 2005. Abundances, identity, and growth state of actinobacteria in mountain lakes of different UV transparency. Applied and Environmental Microbiology 71: 5551–5559.
Wiencke C., Lüder U.H. and Roleda M.Y. 2007. Impact of ultraviolet radiation on physiology and development of zoospores of the brown alga Alaria esculenta from Spitsbergen. Physiologia Plantarum 130: 601–612.
Wynn-Williams D.D. 1996. Response of pioneer soil microalgal colonists to environmental change in Antarctica. Microbial Ecology 31: 177–188.
Yergeau E., Bokhorst S., Kang S., Zhou J., Greer C.W., Aerts R. and Kowalchuk G.A. 2012. Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. The ISME Journal 6: 692–702.
Yu S.O., Brown A., Middleton A.J., Tomczak M.M., Walker V.K. and Davies P.L. 2010. Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis. Cryobiology 61: 327–334.
Go to article

Authors and Affiliations

Kunal Jani
1
Anoop Mahajan
2
Swapnil Kajale
1
Aditee Ashar
1
Avinash Sharma
1

  1. National Centre for Cell Science, Pune, India
  2. Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Dr. Homi Bhabha road, Pune 411008, India
Download PDF Download RIS Download Bibtex

Abstract

In the last decade, Poland has become one of the most active markets for unconventional hydrocarbon deposits exploration. At present, there are twenty concessions for the exploration and/or discovery of reserves, including shale gas. The area covered by exploration concessions constitutes ca. 7.5% of the country’s area. Four main stages can be distinguished In the shale gas development and exploitation project: the selection and preparation of the place of development of the wells, hydraulic drilling and fracturing, exploitation (production) and marketing, exploitation suppression and land reclamation. In the paper, the concept of cost analysis of an investment project related to the exploration and development of a shale gas field/area was presented. The first two stages related to the preparatory work, carried out on the selected site, as well as drilling and hydraulic fracturing were analyzed. For economic reasons, the only rational way to make shale gas reserves available is to use horizontal drilling, either singly or in groups. The number of drilling pads covering the concession area is a fundamental determinant of the development cost of the deposit. In the paper, the results of the cost analysis of various types of reaming method with an area of 25,000,000 m2 were presented. Cost estimates were prepared for two variants: group drilling for three types of drilling pads: with three, five and seven wells and for single wells. The results show that, as the number of horizontal wells increases, the total cost of the development of the deposit is reduced. For tree-wells pad, these costs are 7% lower than in the second variant, for five-well pads they are 11% lower, and for seven-well pads they are 11.5% smaller than in the second variant. Authors, using applied methodology, indicate the direction of further research that will enable the optimization of shale gas drilling operations.

Go to article

Authors and Affiliations

Alicja Byrska-Rąpała
Jerzy Feliks
Marek Karkula
Rafał Wiśniowski
Download PDF Download RIS Download Bibtex

Abstract

Designers of all types of equipment applied in oxygenation and aeration need to get to know the mechanism behind the gas bubble formation. This paper presents a measurement method used for determination of parameters of bubbles forming at jet attachment from which the bubles are displaced upward. The measuring system is based on an optical tomograph containing five projections. An image from the tomograph contains shapes of the forming bubbles and determine their volumes and formation rate. Additionally, this paper presents selected theoretical models known from literature. The measurement results have been compared with simple theoretical models predictions. The paper also contains a study of the potential to apply the presented method for determination of bubble structures and observation of intermediate states.

Go to article

Authors and Affiliations

Mariusz R. Rząsa
Download PDF Download RIS Download Bibtex

Abstract

The Kórnik Library holds many early printed books from the former church of the Unity of the Brethren in Leszno, including an adligat, i.e. a volume combining three works: one by John Calvin and two by Matthias Flacius. This artefact was bound in recycled parchment inscribed with text by an eminent philosopher/scholastic logician, Gilbert de la Porrée; it is a fragment of Commentarius ad Epistolas S. Pauli.
The author of the article compares the text of the Commentary from the parchment cover to other hand-written copies of this work. On the sidelines of reflections concerning the authorship of the treatises attributed to Gilbert, he points out that the research in this scope has not yet taken into account an analysis of the rhythmics. The text which survived on the cover has the form of rhythmic prose – a different one than that in one of Gilbert’s letters.
Go to article

Authors and Affiliations

Tomasz Jasiński
1 2
ORCID: ORCID

  1. Biblioteka Kórnicka
  2. Wydział Historii UAM, Poznań

This page uses 'cookies'. Learn more