Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Exergy analysis is a powerful thermodynamic tool and it helps in computing the actual output of a system. It helps the researchers to optimize the roughened solar air heater design to compensate the present and also the future needs. In this study, investigation on exergetic performance evaluation of a solar air heater with W-shaped roughened absorber surface analytically by employing mathematical model and the results obtained are compared with smooth plate solar air heater under same operating conditions. The exergetic efficiency curves has been plotted as a function of different values of Reynolds number and temperature rise parameter for different roughness parameters. The maximum augmentation in the exergetic efficiency of the solar air heater with W-shaped roughened surface as compared to solar air heater with smooth surface has been obtained as 51% corresponding to the relative roughness height of 0.03375 and the rib angle of attack about 60◦. Based on the exergetic efficiency the suitable design parameters of solar air heater with W-shaped roughened are determined.

Go to article

Authors and Affiliations

Sumer Singh Patel
Atul Lanjewar
Download PDF Download RIS Download Bibtex

Abstract

Transverse effective thermal conductivity of the random unidirectional fibre-reinforced composite was studied. The geometry was circular with random patterns formed using random sequential addition method. Composite geometries for different volume fraction and fibre radii were generated and their effective thermal conductivities (ETC) were calculated. Influence of fibre-matrix conductivity ratio on composite ETC was investigated for high and low values. Patterns were described by a set of coordination numbers (CN) and correlations between ETC and CN were constructed. The correlations were compared with available formulae presented in literature. Additionally, symmetry of the conductivity tensor for the studied geometries of fibres was analysed.

Go to article

Authors and Affiliations

Piotr Darnowski
Piotr Furmański
Roman Domański
Download PDF Download RIS Download Bibtex

Abstract

Thermophysical properties of frozen soil have a great influence on the quality of cast-in-place concrete piles. In this paper, the embedded concrete temperature monitoring system is used to test the variation law of the concrete temperature during the construction of the bored pile. Thermophysical properties of permafrost around piles are tested. Based on the theory of three-phase unsteady heat conduction of soil, the influence of specific heat capacity, thermal conductivity, thermal diffusivity, and latent heat of phase transformation on the temperature change of a concrete pile is systematically studied. The thermal parameter is obtained which exerts the most significant influence on the temperature field. According to the influence degree of frozen soil on pile temperature, the order from high to low is thermal conductivity, thermal diffusivity, latent heat of phase change, and specific heat capacity. The changes in pile wall temperature caused by the change of these properties range between 2.60–10.97°C, 1.49– 9.39°C, 2.16–2.36°C, and 0.24–3.45°C, respectively. The change percentages of parameters vary between 35.77–47.12%, 12.22–40.20%, 12.46–32.25%, and 3.83–20.31%, respectively. Therefore, when designing and constructing concrete foundation piles, the influence of the thermal conductivity of frozen soil on concrete pile temperature should be considered first. The differences between the simulated and measured temperature along the concrete pile in the frozen soil varying with the respective thermal properties are: –2.99– 7.98°C, –1.89–4.99°C, –1.20–1.99°C, and –1.76–1.27°C. Polyurethane foam and other materials with small thermal conductivity can be added around the pile to achieve pile insulation.
Go to article

Authors and Affiliations

Ziying Liu
1
Tianlai Yu
2
Ning Yan
2
Lipeng Gu
2

  1. Northeast Forestry University, College of Home and Art Design, Harbin, 150040, China
  2. Northeast Forestry University, College of Civil Engineering, Harbin, 150040, China

This page uses 'cookies'. Learn more