Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Duct silencers provide effective noise reduction for heating, ventilation and air conditioning systems. These silencers can achieve an excellent sound attenuation through the attributes of their design. The reactive silencer works on the principle of high reflection of sound waves at low frequencies. On the other hand, the dissipative silencer works on the principle of sound absorption, which is very effective at high-frequencies. Combining these two kinds of silencers allowed covering the whole frequency range. In this paper, the effect of liner characteristics composed of a perforated plate backed by a porous material and geometry discontinuities on the acoustic power attenuation of lined ducts is evaluated. This objective is achieved by using a numerical model to compute the multimodal scattering matrix, thus allowing deducing the acoustic power attenuation. The numerical results are obtained for six configurations, including cases of narrowing and widening of a radius duct with sudden or progressive discontinuities. Numerical acoustic power attenuation shows the relative influence of the variation in the values of each parameter of the liner, and of each type of radius discontinuities of ducts.
Go to article

Authors and Affiliations

Dhouha Tounsi
1
Wafa Taktak
2
Raja Dhief
1 3
Mohamed Taktak
1 3
Mabrouk Chaabane
3
Mohamed Haddar
1

  1. Mechanics, Modelling and Production Laboratory (LA2MP), Mechanical Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
  2. National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
  3. Faculty of Sciences of Sfax, Sfax, Tunisia
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the effect of a viscosity modifying admixture (VMA) on the air permeability, sorptivity and strength parameters (compressive and tensile strength) of concrete. The Atlas VM-500 admixture used in the research is a well-known additive that is commonly applied in concrete technology. Air permeability tests were carried out using the Torrent method. It was found that viscosity modifying admixtures (VMAs) have a significant impact on the permeability of concrete. The lowest values of the ���� coefficient were obtained for specimens that matured in a water environment, and which contained 0.5% of VMA. This amount of additive reduced permeability by 34% when compared to the reference series of concrete. For air-conditioned specimens with 1.2% of VMA, the maximum decrease was 28% when compared to the reference samples. In the case of samples conditioned in an environment with an increased humidity, the maximum decrease occurred with a lower VMA content of 0.5% and amounted to 27% when compared to the reference samples. In addition, it was shown that the addition of 1.2% of VMA improved the compressive strength of concrete by 2.3% during its curing in water. In turn, this amount of VMA deteriorated its strength by 10.4% when the specimens were conditioned in air, and by 8.1% when they were conditioned in high humidity.
Go to article

Authors and Affiliations

Wojciech Kubissa
1
ORCID: ORCID
Karol Prałat
1
ORCID: ORCID
Szymon Kania
1

  1. Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, ul. Łukasiewicza 17, 09-400 Płock, Poland

This page uses 'cookies'. Learn more