Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Gene postulation is one of the fastest and most cost-effective methods for identifying seedling leaf rust resistance genes in wheat cultivars. Many researchers use this approach to identify Lr genes in wheat cultivars. The purpose of our research was to identify seedling leaf rust resistance genes in 20 wheat cultivars from different breeding centers of Russia, Ukraine and Germany. Forty-two near isogenic Thatcher lines and 10 Puccinia triticina isolates were used for gene postulation. When assessing the infection types to cultivars and lines, a scale was used, according to Oelke and Kolmer. In 20 wheat cultivars 19 Lr genes were postulated: 2c, 3, 10, 3bg, 3ka, 14a, 17, 18, 23, 25, 26, 30, 33, 40, 44, 50, B, Exch, Kanred. The most common for cultivars was the Lr10 gene. In five cultivars, showing high field resistance, most postulated seedling genes (Lr2c, Lr3, Lr10, Lr14а, Lr26, Lr33) were not effective in the adult stage. It is possible that resistance of such cultivars is associated with APR genes, the postulation of which requires an expansion in the number and spectrum of P. triticina isolate virulence. Most of the studied cultivars (60%) have recently been entered into the register (2015–2019) and in the field show a stable or moderately susceptible response to P. triticina infection, despite the fact that the Lr genes postulated in them were not effective in the adult stage. The data obtained indicated a variety of genotypes of the studied cultivars, as well as the tendency of breeders to use the effect of pyramiding ineffective genes, which can prolong the resistance of the cultivar. Annual monitoring of varieties is necessary in each region, especially when reacting with a medium susceptible type (MS), which may indicate the initial stage of resistance loss.

Go to article

Authors and Affiliations

Galina Vladimirovna Volkova
Olga Alexandrovna Kudinova
Olga Feodorovna Vaganova
Download PDF Download RIS Download Bibtex

Abstract

Changing atmospheric conditions, including above all the deepening extreme weather phenomena, are increasing from year to year. This, in consequence, causes an increase in the incidence of low outflows.
The study compares low water levels for two catchments: Biała Woda and Czarna Woda, and phosphorus and nitrogen load using the Nutrient Delivery Ratio (NDR) model in InVEST software. The objective of the NDR is to map nutrient sources from catchment area and transfer to the river bed. The nutrient loads (nitrogen and phosphorus) spread across the landscape are determined based on a land use (LULC) map and associated loading rates described in literature. The studies have shown that low water levels have been more common recently and pose the greatest threat to the biological life in the aquatic ecosystems. The structure of land use is also of great importance, with a significant impact on the runoff and nitrogen and phosphorus load. Phosphorus and runoff from surface sources to the water of Biała Woda and Czarna Woda catchments area has been reduced in forested areas. Only higher run-offs are observed in the residential buildings zone. The nitrogen load was also greater in the lower (estuary) parts of both catchments, where residential buildings dominate.
Go to article

Authors and Affiliations

Marek T. Kopacz
1
ORCID: ORCID
Zbigniew Kowalewski
1
ORCID: ORCID
Luis Santos
2
Robert Mazur
1
ORCID: ORCID
Vasco Lopes
3
Agnieszka Kowalczyk
4
ORCID: ORCID
Dominika Bar-Michalczyk
4
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Mickiewicza 30, 30-059, Kraków, Poland
  2. Polytechnic Institute of Tomar, Departamento Arqueologia, Conservação e Restauro e Património, Portugal
  3. Polytechnic Institute of Tomar, School of Technology, Portugal
  4. Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 09-090 Raszyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of investigations was to understand the effect of herbicides application on soil environment and residues in sugar beet. Field experiments were carried out during 1997-2001 on arable field near Wroclaw. Herbicides to weed control in sugar beet were applied at recommended dose alone and in mixture with adjuvants. Samples of soil, leaves and roots of sugar beet were taken on the day of harvest. Additional, soil samples were taken six weeks (in autumn 2000) and five months (in spring 2001) after harvest. All samples were analysed (herbicide residues) using the high-performance liquid chromatography (HPLC) with UV-detection and gas liquid chromatography (GLC) with ECD. Residues of active ingredient of herbicides determined in roots and leaves of sugar beet did not exceed acceptable values included in EU standards and herbicides use in normal agricultural practice should not present problems for following crops. Moreover, the addition of adjuvants caused an increase of the herbicide active ingredient residue in soil, leaves and roots of sugar beet samples in comparison with the treatments, where herbicides alone were used.
Go to article

Authors and Affiliations

Mariusz Kucharski
Download PDF Download RIS Download Bibtex

Abstract

Finite fossil fuel resources, as well as the instability of renewable energy production, make the sustainable management of energy production and consumption some of the key challenges of the 21st century. It also involves threats to the state of the natural environment, among others due to the negative impact of energy on the climate. In such a situation, one of the methods of improving the efficiency of energy management – both on the micro (dispersed energy) and macro (power system) scale, may be innovative technological solutions that enable energy storage. Their effective implementation will allow it to be collected during periods of overproduction and to be used in situations of scarcity. These challenges cannot be overestimated - modern science has a challenge to solve various types of problems related to storage, including the technology used or the control/ /management of energy storage. Heat storage technologies, on which research works are carried out regarding both storage based on a medium such as water, as well as storage using thermochemical transformations or phase-change materials. They give a wide range of applications and improve the efficiency of energy systems on both the macro and micro scale. Of course, the technological properties and economic parameters have an impact on the application of the chosen technology. The article presents a comparison of storage parameters or heat storage methods based on different materials with specification of their work parameters or operating costs.

Go to article

Authors and Affiliations

Paweł Jastrzębski
Piotr W. Saługa

This page uses 'cookies'. Learn more