Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Natural fibres are attractive as the raw material for developing sound absorber, as they are green, eco-friendly, and health friendly. In this paper, pineapple leaf fibre/epoxy composite is considered in sound absorber development where several values of mechanical pressures were introduced during the fabrication of absorber composite. The results show that the composite can absorb incoming sound wave, where sound absorption coefficients α _n > 0.5 are pronounced at mid and high frequencies. It is also found that 23.15 kN/m^2 mechanical pressure in composite fabrication is preferred, while higher pressure leads to solid panel rather than sound absorber so that the absorption capability reduces. To extend the absorption towards lower frequency, the composite absorber requires thickness higher than 3 cm, while a thinner absorber is only effective at 1 kHz and above. Additionally, it is confirmed that the Delany-Bazley formulation fails to predict associated absorption behavior of pineapple leaf fibre-based absorber. Meanwhile, a modified Delany-Bazley model discussed in this paper is more useful. It is expected that the model can assist further development of the pineapple leaf composite sound absorber.

Go to article

Authors and Affiliations

Damar Rastri Adhika
Iwan Prasetiyo
Abiyoga Noeriman
Nurul Hidayah
Widayani
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we theoretically analyze the slow-light π-phase-shifted fiber Bragg grating (π-FBG) and its applications for single and multipoint/quasi-distributed sensing. Coupled-mode theory (CMT) and transfer matrix method (TMM) are used to establish the numerical modeling of slow-light π-FBG. The impact of slow-light FBG parameters, such as grating length (L), index change (Δn), and loss coefficient (α) on the spectral properties of π-FBG along with strain and thermal sensitivities are presented. Simulation results show that for the optimum grating parameters L = 50 mm, Δn = 1.5×10−4, and α = 0.10 m-1, the proposed slow-light π-FBG is characterized with a peak transmissivity of 0.424, the maximum delay of 31.95 ns, strain sensitivity of 8.380 με-1, and temperature sensitivity of 91.064 °C-1. The strain and temperature sensitivity of proposed slow-light π-FBG is the highest as compared to the slow-light sensitivity of apodized FBGs reported in the literature. The proposed grating have the overall full-width at half maximum (FWHM) of 0.2245 nm, and the FWHM of the Bragg wavelength peak transmissivity is of 0.0798 pm. The optimized slow-light π-FBG is used for quasi-distributed sensing applications. For the five-stage strain quasi-distributed sensing network, a high strain dynamic range of value 1469 με is obtained for sensors wavelength spacing as small as 2 nm. In the case of temperature of quasi-distributed sensing network, the obtained dynamic range is of 133°C. For measurement system with a sufficiently wide spectral range, the π-FBGs wavelength grid can be broadened which results in substantial increase of dynamic range of the system.

Go to article

Authors and Affiliations

K.M. Dwivedi
T. Osuch
G. Trivedi
Download PDF Download RIS Download Bibtex

Abstract

In the 17th century were functioned in England two types of public spaces: piazza type of squares, devoid of plants’ composition and green city squares of a garden nature, designed for the residents of the nearby houses. Both of these presented the high-class type of public space, which with the time became popular in many cities in Europe. The aim of the paper is to define the importance of these arrangements in urban landscape, including the identification of functions which they perform today in urban tissue of cities.

Go to article

Authors and Affiliations

Ewa Waryś

This page uses 'cookies'. Learn more