Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Continuous steel-concrete composite girder can fully utilize material strength and possess large spanning ability for bridge constructions. However, the weak cracking resistance at the negative bending moment region of the girder seriously harms its durability and serviceability. This paper investigates practical techniques to improve the cracking performance of continuous steel-concrete composite girders subjected to hogging moment.Areal continuous girderwas selected as the background bridge and introduced for numerical analysis. Modeling results show that under the serviceability limit state, the principle stress of concrete slabs near the middle piers of the bridgewas far beyond the allowable material strength, producing a maximum tensile stress of 10.0 MPa. Approaches for strengthening concrete decks at the negative moment region were developed and the effectiveness of each approach was assessed by examing the tensile stress in the slabs. Results indicate that the temporary counterweight approach decreased the maximum tensile stress in concrete slabs by 22%. Due to concrete shrinkage and creep, more than 65% of the prestressed compressive stresses in concrete slabs were finally dispersed to the steel beams. A thin ultra-high performance concrete (UHPC) overlay at the hogging moment region effectively increased the cracking resistance of the slabs, and practical engineering results convicted the applicability of the UHPC technique.
Go to article

Authors and Affiliations

Min Cai
1
ORCID: ORCID
Wenjie Li
2
ORCID: ORCID
Zhiyong Wan
3
ORCID: ORCID
Jianjun Sheng
1
ORCID: ORCID
Juliang Tan
4
ORCID: ORCID
Chao Ma
1
ORCID: ORCID

  1. Guangdong Highway Construction Co., LTD, 510623 Guangzhou, China
  2. Guangdong Yunmao Expressway Co. Ltd, 525346 Guangzhou, China
  3. Guangdong Communication Planning & Design Institute Co., Ltd,510507 Guangzhou, China
  4. Guangdong Communication Planning & Design Institute Co., Ltd, 510507 Guangzhou, China
Download PDF Download RIS Download Bibtex

Abstract

Worldwide commercial interest in the production of cerium doped yttrium aluminium garnet (YAG:Ce) phosphors is reflected in the widespread use of white light emitting devices. Despite of the fact that YAG:Ce is considered a “cool phosphor” it is the most important in white LED technology. This article reviews the developed techniques for producing phosphors with superior photoluminescence efficiency, including solid-state reaction, sol-gel and (co)precipitation methods. Also, by co-doping with rare earth elements, a red/blue shift is reached in the spectrum. The characteristics of YAG:Ce phosphors are investigated because the properties of the phosphors are strongly influenced by the synthesis routes and the sintering temperature treatment. After the phase analysis, morphology and emission studies of the phosphors there may be seen the conditions when the transition from the amorphous phase to the crystalline phase appears, when luminescent properties are influenced by the crystalline form, purity, average size of the particles, co-doping and so on.

Go to article

Authors and Affiliations

V. Tucureanu
A. Matei
A.M. Avram

This page uses 'cookies'. Learn more