Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The magnetoacoustic heating of a plasma by harmonic or periodic saw-tooth perturbations at a transducer is theoretically studied. The planar fast and slow magnetosound waves are considered. The wave vector may form an arbitrary angle θ with the equilibrium straight magnetic strength. In view of variable θ and plasma-β, the description of magnetosound perturbations and relative magnetosound heating is fairly difficult. The scenario of heating depends not only on plasma-β and θ, but also on a balance between nonlinear attenuation at the shock front and inflow of energy into a system. Under some conditions, the average over the magnetosound period force of heating may tend to a positive or negative limit, or may tend to zero, or may remain constant when the distance from a transducer tends to infinity. Dynamics of temperature specifying heating differs in thermally stable and unstable cases and occurs unusually in the isentropically unstable flows.

Go to article

Authors and Affiliations

Anna Perelomova
Download PDF Download RIS Download Bibtex

Abstract

Two different principles of TMF-testing were investigated for the wrought aluminium alloy AlCuBiPb (201 I). In the first testing method the specimens are clamped in a stiff load frame. A cyclic temperature load is applied, which leads to an out-of-phase (OP) TMF loading. The local strain is measured within the parallel cross section of the specimen. The second series of OP-TMF tests are conducted using closed loop strain control on a servo-hydraulic TMF testing system, which guarantees a rigid restraint condition within the parallel section of the specimen. To compare these two principles of TMF-testing, additional experiments were conducted with different mechanical strain amplitudes. The two experiments can be compared well, when the local strains are taken into account. Therefore, the method of the rigid clamped specimen can be used to get experimental data in a wide range of strain amplitudes.
Go to article

Authors and Affiliations

Robert Minichmayr
Martin Riedler
Wilfried Eichlseder
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a video encoding method in which noise is encoded using a novel parametric model representing spectral envelope and spatial distribution of energy. The proposed method has been experimentally assessed using video test sequences in a practical setup consisting of a simple, real-time noise reduction technique and High Efficiency Video Codec (HEVC). The attained results show that the use of the proposed parametric modelling of noise can improve the subjective quality of reconstructed video by approximately 1.8 Mean Opinion Scope (MOS) points (in 11-point scale) related to the classical video coding. Moreover, the present work confirms results attained in the previous works that the usage of even sole noise reduction prior to the encoding provides quality increase.

Go to article

Authors and Affiliations

O. Stankiewicz

This page uses 'cookies'. Learn more