Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article discusses some recent developments in the US jurisprudence concerning state immunity. Some lower courts’ decisions handed down earlier suggested a more decisive departure from the rigid interpretation of the Foreign Sovereign Immunity Act (FSIA). If the US Supreme Court had accepted this new jurisprudential trend, it would possibly allow for carving out a partial acceptance of a human rights exception. However, the Supreme Court decided otherwise. In the recently handed-down decision in Germany et al. v. Philipp et al., the Justices rejected any innovations, unequivocally maintained the strict interpretation of FSIA §1603(a)(3), and by their direct reference to the International Court of Justice strengthened the existing status quo in international law as well. This note analyzes this decision’s possible consequences at the domestic and international levels. In conclusion, it seeks to place Germany vs. Philipp in a broader context. It suggests that it possibly reflects more general tendencies in the contemporary US jurisprudence, which can impact both the US domestic legal order and international law.
Go to article

Authors and Affiliations

Aleksander Gubrynowicz
1
ORCID: ORCID

  1. Assistant Professor (dr. habil.), Faculty of Law and Administration, University of Warsaw
Download PDF Download RIS Download Bibtex

Abstract

This study analysis is aimed at examining the relationship between logical thinking, metacognitive skills, and problem-solving abilities. To accomplish the research purpose, 100 senior secondary school students were surveyed. A descriptive survey method was adopted to examine the study results. Logical thinking, problem-solving abilities, and metacognitive skills scales were used to assess students' skills. These three scales have been pretested and have good reliability and validity. The collected data was analysed using correlation and multiple regression techniques. Pearson product-moment correlation results show a significant relationship between study variables. Further, results of the comparison show that problem-solving abilities differ significantly on the basis of gender and stream of the students. Mediation analysis revealed that logical thinking fully mediates the relationship between metacognition and problem-solving abilities. In the present study, logical thinking accounts for 52.4% of the total effect. Moreover, the result of the interaction of metacognition and logical thinking skills on problem-solving abilities is significant, which leads to the conclusion that logical thinking also works as a moderator between the predictor and outcome variable.
Go to article

Authors and Affiliations

Poonam Punia
1
Ritu Malik
1
Manju Bala
1
Manju Phor
1
Yogesh Chander
1

  1. BPSMV, Khanpur Kalan, India
Download PDF Download RIS Download Bibtex

Abstract

The paper reviews selected methods of agricultural biogas production and characterizes their technical and technological aspects. The conditions of the anaerobic fermentation process in the reactor with adhesive skeleton bed were analyzed. The required technological criteria for the production of biogas from a substrate in the form of pig slurry were indicated. As part of experimental studies, evaluation of the biogas replacement resistance coefficient and the permeability coefficient as a function of the Reynolds number were made. The method of numerical simulation with the use of a tool containing computational fluid dynamics codes was applied. Using the turbulent flow model – the RANS model with the enhanced wall treatment option, a numerical simulation was carried out, allowing for a detailed analysis of hydrodynamic phenomena in the adhesive skeleton bed. The paper presents the experimental and numerical results that allow to understand the fluid flow characteristics for the intensification of agricultural biogas production.
Go to article

Bibliography

[1] Grzegorzewicz J., Gruszecki Z., Sciezynski H., Cieslak R., Smaga M., Jurkowski A., Matyja K., Papuga W.: Bubble Reactor. Patent Office of the Republic of Poland. Patent Application P.174663, 1994 (in Polish).
[2] http://pfee.de/en/cellroll/ (accessed 15 Apr. 2018).
[3] http://www.ows.be/household_waste/dranco/ (accessed 15 Apr. 2018).
[4] https://www.hz-inova.com/hitachi-zosen-inova-doubles-up-with-contract-forsecond-kompogas-plant-in-peloponnese-region/ (accessed 12 May 2018).
[5] http://www.valorgainternational.fr/en/mpg3-128079–VALORGA-SANAEROBIC-DIGESTION-PROCESS.html (accessed 12 May 2018).
[6] Oniszk-Popławska A., Matyka M.: Final report on the field research. “Comprehensive assessment of the conditions for biogas production in the Lubelskie Voivodeship”. Regional Economic Change Management System, 2012 (in Polish).
[7] Jedrczak A.: Biological waste treatment. Przeglad Komunalny (2001), 6, 89–92 (in Polish). [8] Wałowski G.: Developing technique anaerobic digestion in the contex of renewable energy sources. In: Proc. 26th Eur. Biomass Conf., Copenhagen, 14-17 May 2018, 798–808
[9] Kowalczyk-Jusko A.: Biogas plants an opportunity for agriculture and the environment. Fundacja na rzecz Rozwoju Polskiego Rolnictwa, 2013 (in Polish).
[10] Głodek E.: Report on the EU project POKL.08.02.01-16-028 / 09 Sources of Energy in the Opole region 2013 promotion, technologies, support, implementation. Institute of Ceramics and Building Materials, Opole 2010. (in Polish).
[11] den Boer E., Szpadt R.: Biogas plants as an opportunity for agriculture and the environment]. In: Proc. Conf. on 24 Oct. 2013, Dolnoslaski Osrodek Doradztwa Rolniczego we Wrocławiu (in Polish).
[12] Karłowski J., Kliber A., Myczko A., Golimowska R., Myczko R.: Agronomy in the sustainable development of modern agriculture]. In: Proc. 4th Sci. Conf. of the Polish Agronomic Society, Warszawa, 5-7 Sept. 2011 (in Polish).
[13] Myczko A., Myczko R., Kołodziejczyk T., Golimowska R., Lenarczyk J., Janas Z., Kliber A., Karłowski J., Dolska M.: Construction and Operation of Agricultural Biogas Plants. Wyd. ITP, Warszawa Poznan 2011.
[14] Kołodziejczyk T., Myczko R., Myczko A.: Use of residual non-food cellulosic material for biogas production. Ciepłownictwo, Ogrzewanictwo, Wentylacja 42(2011), 9, 360–363. (in Polish).
[15] Wałowski G.: Interpretation of the mechanism of biogas flow through an adhesive bed in analogy to gas-permeability for a structural model of a porous material. Int. J. Curr. Res. 10(2018), 12, 76225–76228.
[16] Wałowski G.: Multi-phase flow assessment for the fermentation process in monosubstrate reactor with skeleton bed. J. Water Land Dev. 42(2019), 7-9, 150–156.
[17] Myczko A., Kliber A., Tupalski L.: The latest achievements in the field of renewable energy sources along with the presentation of barriers to the implementation of research results into business practice. In: The Latest Developments in the Field of RES, Including the Presentation of Barriers to the Implementation of Research Results in Business Practice and Suggestions for their Solutions (B. Mickiewicz, Ed.), Koszalin 2012 (in Polish).
[18] Wałowski G., Borek, K. Romaniuk W., Wardal W.J., Borusewicz A.: Modern Systems of Obtaining Energy – Biogas. Wydawnictwo Wyzszej Szkoły Agrobiznesu w Łomzy, Łomza 2019 (in Polish).
[19] Strzelecki T., Kostecki S., Zak S.: Modelling of flows through porous media. Dolnoslaskie Wydawnictwo Edukacyjne, Wrocław, 2008. (in Polish).
[20] https://www.ansys.com/products/fluids/ansys-fluent (accessed 15 Apr. 2018).
Go to article

Authors and Affiliations

Grzegorz Wałowski
1
ORCID: ORCID

  1. Institute of Technology and Life Sciences, Falenty, Department of Renewable Energy, Poznań Branch, ul. Biskupińska 67, 60-463 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Fusarium wilt, incited by Fusarium oxysporum f. sp. lycopersici (FOL), causes serious production losses of tomato ( Solanum lycopersicum L.) plants. Biological control, using an antagonistic of Trichoderma species, is a bio-rationale and an alternative method to synthetic pesticides against most phytopathogens. The present study was undertaken to evaluate the effects of T. harzianum and/or T. viride in reducing Fusarium wilt and to determine the relationship between disease severity and plant growth promoting traits of these species. Trichoderma viride exhibited better phosphate solubilization and production of cellulases, ligninases, chitinases, proteases, hydrogen cyanide (HCN), siderophores and indole acetic acid (IAA) than T. harzianum. For field assessment, five treatments with three replicates were used. The field was inoculated with the wilt fungus (FOL). Both Trichoderma spp. used were applied as a seed treatment, mixed in the soil, and FOL inoculated soil served as the untreated control. During the two consecutive years, seed treatment with T. viride exhibited the least disease severity, the highest physiological activity, the highest biochemical and antioxidant contents, and tomato plants treated with it exhibited the best growth and yield. It was concluded that Trichoderma viride can potentially be used to reduce Fusarium wilt and promote plant growth and yield in commercial tomato production.
Go to article

Bibliography


Abd-El-Khair H., Elshahawy I.E., Haggag H.K. 2019. Field application of Trichoderma spp. combined with thiophanate-methyl for controlling Fusarium solani and Fusarium oxysporum in dry bean. Bulletin of the National Research Centre 43 (1): 19. DOI: https://doi.org/10.1186/s42269-019-0062-5
Abdelrahman M., Abdel-Motaal F., El-Sayed M., Jogaiah S., Shigyo M., Ito S.I., Tran L.S.P. 2016. Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Science 246: 128–138. DOI: https://doi.org/10.1016/j.plantsci.2016.02.008
Ahanger M.A., Tyagi S.R., Wani M.R., Ahmad P. 2014. Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. p. 25–55. In: Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment (P. Ahmad, M. Wani, eds.). Springer, New York, USA. DOI: https://doi.org/10.1007/978-1-4614-8591-9_2
Ahemad M., Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University – Science 26 (1):1–20. DOI: https://doi.org/10.1016/j.jksus.2013.05.001
Ahmad P., Hashem A., Abd-Allah E.F., Alqarawi A.A., John R., Egamberdieva D., Gucel S. 2015. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in Plant Science 6: 868. DOI: https://doi.org/10.3389/fpls.2015.00868
Ahmed M. 2011. Management of Fusarium wilt of tomato by soil amendment with Trichoderma koningii and a white sterile fungus. Indian Journal of Research 5: 35–38.
Al-Ani L.K.T. 2018. Trichoderma: beneficial role in sustainable agriculture by plant disease management. “Plant Microbiome: Stress Response 5: 105–126. DOI: https://doi.org/10.1007/978-981-10-5514-0_5
Antoun H., Kloepper J.W. 2001. Plant growth-promoting rhizobacteria (PGPR). p. 1477–1480. In: “Encyclopedia of genetics” (S. Brenner, J.F. Miller, eds.). Academic Press, New York, USA. DOI: https://doi.org/10.1006/rwgn.2001.1636
Benítez T., Rincón A.M., Limón M.C., Codon A.C. 2004. Biocontrol mechanisms of Trichoderma strains. International Microbiology 7 (4): 249–260.
Blumer C., Haas D. 2000. Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology 173 (3): 170–177. DOI: https://doi.org/10.1007/s002039900127
Castano R., Borrero C., Trillas M.I., Avilés M. 2013. Selection of biological control agents against tomato Fusarium wilt and evaluation in greenhouse conditions of two selected agents in three growing media. BioControl 58 (1): 105–116. DOI: https://doi.org/10.1007/s10526-012-9465-z
Chaves-Gómez J.L., Chavez-Arias C.C., Cotes Prado A.M., Gómez-Caro S., Restrepo-Díaz H. 2019. Physiological response of cape gooseberry seedlings to three biological control agents under Fusarium oxysporum f. sp. physali infection. Plant Disease 104 (2): 388–397. DOI: https://doi.org/10.1094/pdis-03-19-0466-re
Chet I., Inbar J. 1994. Biological control of fungal pathogens. Applied Biochemistry and Biotechnology 48 (1): 37–43. DOI: https://doi.org/10.1007/BF02825358
Contreras-Cornejo H.A., Macías-Rodríguez L., Vergara A.G., López-Bucio J. 2015. Trichoderma modulates stomatal aperture and leaf transpiration through an abscisic acid-dependent mechanism in Arabidopsis. Journal of Plant Growth Regulation 34 (2): 425–432. DOI: http://dx.doi.org/10.1007/s00344-014-9471-8
de Rodríguez D.J., Angulo-Sánchez J.L., Hernández-Castillo F.D. 2006. An overview of the antimicrobial properties of Mexican medicinal plants. Advances in Phytomedicine 3: 325–377. DOI: https://doi.org/10.1016/s1572-557x(06)03014-5
Deng J.J., Shi D., Mao H.H., Li Z.W., Liang S., Ke Y., Luo X.C. 2019. Heterologous expression and characterization of an antifungal chitinase (Chit46) from Trichoderma harzianum GIM 3.442 and its application in colloidal chitin conversion. International Journal of Biological Macromolecules 134: 113–121. DOI: https://doi.org/10.1016/j.ijbiomac.2019.04.177
Ehmann A. 1977. The Van Urk-Salkowski reagent – a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography A 132 (2): 267–276. DOI: https://doi.org/10.1016/s0021-9673(00)89300-0
Eisendle M., Oberegger H., Buttinger R., Illmer P., Haas H. 2004. Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH regulatory system in Aspergillus nidulans. Eukaryotic Cell 3 (2): 561–563. DOI: https://doi.org/10.1128/ec.3.2.561-563.2004
Elshahawy I.E., El-Mohamady R.S. 2019. Biological control of Pythium damping-off and root-rot of tomato using Trichoderma isolates employed alone or in combinations. Journal of Plant Pathology 101 (3): 597–608. DOI: https://doi.org/10.1007/s42161-019-00248-z
Fang-Fang X., Ming-Fu G., Zhao-Ping H., Ling-Chao F. 2017. Identification of Trichoderma strain M2 and related growth promoting effects on Brassica chinensis L. International Journal of Agricultural Resources 34 (1): 80.
Fish W.W., Perkins-Veazie P., Collins J.K. 2002. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. Journal of Food Composition and Analysis 15 (3): 309–317. DOI: https://doi.org/10.1006/jfca.2002.1069.
Harikrushana P., Ramchandra S., Shah K.R. 2014. Study of wilt producing Fusarium spp. from tomato (Lycopersicon esculentum Mill). International Journal of Current Microbiology and Applied Sciences 3: 854–858. https://www.researchgatenet/publication/265793287_Original_Research_Article_Study_of_wilt_producing_Fusarium_sp_from_tomato_Lycopersicon_esculentum_Mill
Harish S., Kavino M., Kumar N., Saravanakumar D., Soorianathasundaram K., Samiyappan R. 2008. Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against banana bunchy top virus. Applied Soil Ecology 39 (2): 187–200. DOI: https://doi.org/10.1016/j.apsoil.2007.12.006
Harman G.E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96 (2): 190–194. DOI: https://doi.org/10.1094/phyto-96-0190
Harman G.E., Herrera-Estrella A.H., Horwitz B.A., Lorito M. 2012. Special issue: Trichoderma – from basic biology to biotechnology. Microbiology 158 (1): 1–2. DOI: https://doi.org/10.1099/mic.0.056424-0
Hasan Z.A.E., Mohd Zainudin N.A.I., Aris A., Ibrahim M.H., Yusof M.T. 2020. Biocontrol efficacy of Trichoderma asperellum‐enriched coconut fibre against Fusarium wilts of cherry tomato. Journal of Applied Microbiology 129 (4): 991–1003. DOI: https://doi.org/10.1111/jam.14674
Hashem A., Abd_Allah E.F., Alqarawi A.A., Al-Huqail A.A., Wirth S., Egamberdieva D. 2016. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers in Microbiology 7: 1089. DOI: https://doi.org/10.3389/fmicb.2016.01089
Hiscox J.D., Israelstam G.F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57 (12): 1332–1334. DOI: https://doi.org/10.1139/b80-044
Hsu S.C., Lockwood J.L. 1975. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Applied and Environmental Microbiology 29 (3): 422–426. DOI: https://doi.org/10.1128/aem.29.3.422-426.1975
Huang C.H., Roberts P.D., Datnoff L.E. 2012. Fusarium diseases of tomato. p. 145–158. In: “Fusarium Wilts of Greenhouse Vegetable and Ornamental Crops. APS Press, St. Paul, USA.
Jamil A., Ashraf S. 2020. Utilization of chemical fungicides in managing the wilt disease of chickpea caused by Fusarium oxysporum f. sp. ciceri. Archives of Phytopathology and Plant Protection 53 (17–18): 876–898. DOI: https://doi.org/10.1080/03235408.2020.1803705
Jamil A., Musheer N., Ashraf S. 2020. Antagonistic potential of Trichoderma harzianum and Azadirachta indica against Fusarium oxysporum f. sp. capsici for the management of chilli wilt. Journal of Plant Diseases and Protection. (In press) DOI: https://doi.org/10.1007/s41348-020-00383-1
Jangir M., Sharma S., Sharma S. 2019. Target and non-target effects of dual inoculation of biocontrol agents against Fusarium wilt in Solanum lycopersicum. Biological Control 138: 104069. DOI: https://doi.org/10.1016/j.biocontrol.2019.104069
Jogaiah S., Abdelrahman M., Tran L.S.P., Shin-ichi I. 2013. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. Journal of Experimental Botany 64 (12): 3829–3842. DOI: https://doi.org/10.1093/jxb/ert212
Kapur A., Hasković A., Čopra-Janićijević A., Klepo L., Topčagić A., Tahirović I., Sofić E. 2012. Spectrophotometric analysis of total ascorbic acid content in various fruits and vegetables. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina 38 (4): 39–42.
Kausar H., Sariah M., Saud H.M., Alam M.Z., Ismail M.R. 2011. Isolation and screening of potential actinobacteria for rapid composting of rice straw. Biodegradation 22 (2): 367–375. DOI: https://doi.org/10.1007/s10532-010-9407-3
Khare E., Kumar S., Kim K. 2018. Role of peptaibols and lytic enzymes of Trichoderma cerinum Gur1 in biocontrol of Fusraium oxysporum and chickpea wilt. Environmental Sustainability 1 (1): 39–47. DOI: https://doi.org/10.1007/s42398-018-0022-2
Khoshmanzar E., Aliasgharzad N., Neyshabouri M.R., Khoshru B., Arzanlou M., Lajayer B.A. 2019. Effects of Trichoderma isolates on tomato growth and inducing its tolerance to water-deficit stress. International Journal of Environmental Science and Technology 17 (2): 869–878. DOI: https://doi.org/10.1007/s13762-019-02405-4
Komada H. 1975. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Review of Plant Protection Research 8: 114–124.
Kotasthane A., Agrawal T., Kushwah R., Rahatkar O.V. 2015. In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. European Journal of Plant Pathology 141 (3): 523–543. DOI: https://doi.org/10.1007/s10658-014-0560-0
Lacava P.T., Silva-Stenico M.E., Araújo W.L., Simionato A.V.C., Carrilho E., Tsai S.M., Azevedo J.L. 2008. Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. pauca. Pesquisa Agropecuária Brasileira 43 (4): 521–528. DOI: https://doi.org/10.1590/s0100-204x2008000400011
Li R., Chen W., Cai F., Zhao Z., Gao R., Long X. 2017. Effects of Trichoderma-enriched biofertilizer on tomato plant growth and fruit quality. Journal of Nanjing Agricultural University 40 (3): 464–472.
Li Y.T., Hwang S.G., Huang Y.M., Huang C.H. 2018. Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Protection 110: 275–282. DOI: https://doi.org/10.1016/j.cropro.2017.03.021
López-Bucio J., Pelagio-Flores R., Herrera-Estrella A. 2015. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae 196: 109–123. DOI: https://doi.org/10.1016/j.scienta.2015.08.043
Lopez-Mondejar R., Bernal-Vicente A., Ros M., Tittarelli F., Canali S., Intrigiolo F., Pascual J.A. 2010. Utilisation of citrus compost-based growing media amended with Trichoderma harzianum T-78 in Cucumis melo L. seedling production. Bioresource Technology 101 (10): 3718–3723. DOI: https://doi.org/10.1016/j.biortech.2009.12.102
Luo Y., Teng Y., Luo X.Q., Li Z.H.G. 2016. Development of wettable powder of Trichoderma reesei FS10-C and its plant growth-promoting effects. Biotechnology Bulletin 32: 194–199.
Macías-Rodríguez L., Guzmán-Gómez A., García-Juárez P., Contreras-Cornejo H.A. 2018. Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiology Ecology 94 (9): 137. DOI: https://doi.org/10.1093/femsec/fiy137
Madhavan S., Paranidharan V., Velazhahan R. 2011. Foliar application of Burkholderia spp. strain TNAU-1 leads to activation of defense responses in chilli (Capsicum annuum L.). Brazilian Journal of Plant Physiology 23 (4): 261–266. DOI: https://doi.org/10.1590/s1677-04202011000400003
Marzano M., Gallo A., Altomare C. 2013. Improvement of biocontrol efficacy of Trichoderma harzianum vs. Fusarium oxysporum f. sp. lycopersici through UV-induced tolerance to fusaric acid. Biological Control 67 (3): 397–408. DOI: https://doi.org/10.1016/j.biocontrol.2013.09.008
McGovern R.J. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Protection 73: 78–92. DOI: https://doi.org/10.1016/j.cropro.2015.02.021
Mei L.I., Hua L.I.A.N., Su X.L., Ying T.I.A.N., Huang W.K., Jie M.E.I., Jiang X.L. 2019. The effects of Trichoderma on preventing cucumber Fusarium wilt and regulating cucumber physiology. Journal of Integrative Agriculture 18 (3): 607–617. DOI: https://doi.org/10.1016/s2095-3119(18)62057-x
Mishra A., Singh S.P., Mahfooz S., Singh S.P., Bhattacharya A., Mishra N., Nautiyal C.S. 2018. Endophyte-mediated modulation of defense-related genes and systemic resistance in Withania somnifera (L.) Dunal under Alternaria alternata stress. Applied Environmental Microbiology 84 (8): e0284517. DOI: https://doi.org/10.1128/aem.02845-17
Molla A.H., Haque M.M., Haque M.A., Ilias G.N.M. 2012. Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agricultural Research 1 (3): 265–272. DOI: https://doi.org/10.1007/s40003-012-0025-7
Mona S.A., Hashem A., Abd_Allah E.F., Alqarawi A.A., Soliman D.W.K., Wirth S., Egamberdieva D. 2017. Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. Journal of Integrative Agriculture 16 (8): 1751–1757. DOI: https://doi.org/10.1016/s2095-3119(17)61695-2
Ng L.C., Ngadin A., Azhari M., Zahari N.A. 2015. Potential of Trichoderma spp. as biological control agents against bakanae pathogen (Fusarium fujikuroi) in rice. Asian Journal of Plant Pathology 9 (2): 46–58. DOI: https://doi.org/10.3923/ajppaj.2015.46.58
Nicolás C., Hermosa R., Rubio B., Mukherjee P.K., Monte E. 2014. Trichoderma genes in plants for stress tolerance-status and prospects. Plant Science 228: 71–78. DOI: https://doi.org/10.1016/j.plantsci.2014.03.005
Nielsen P., Sørensen J. 1997. Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiology Ecology 22 (3): 183–192. DOI: https://doi.org/10.1111/j.1574-6941.1997.tb00370.x
Noori M.S., Saud H.M. 2012. Potential plant growth-promoting activity of Pseudomonas spp. isolated from paddy soil in Malaysia as biocontrol agent. Journal of Plant Pathology and Microbiology 3 (2): 1–4. DOI: https://doi.org/10.4172/2157-7471.1000120
Otieno N., Lally R.D., Kiwanuka S., Lloyd A., Ryan D., Germaine K.J., Dowling D.N. 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology 6: 745. DOI: https://doi.org/10.3389/fmicb.2015.00745
Paramanandham P., Rajkumari J., Pattnaik S., Busi S. 2017. Biocontrol potential against Fusarium oxysporum f. sp. lycopersici and Alternaria solani and tomato plant growth due to Plant Growth–Promoting Rhizobacteria. International Journal of Vegetable Science 23 (4): 294–303. DOI: https://doi.org/10.1080/19315260.2016.1271850
Pérez-Miranda S., Cabirol N., George-Téllez R., Zamudio-Rivera L.S., Fernández F.J. 2007. O-CAS, a fast and universal method for siderophore detection. Journal of Microbiological Methods 70 (1): 127–131. DOI: https://doi.org/10.1016/j.mimet.2007.03.023
Qi W., Zhao L. 2013. Study of the siderophore‐producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. Journal of Basic Microbiology 53 (4): 355–364. DOI: https://doi.org/10.1002/jobm.201200031
Ramaiah A.K., Garampalli R.K.H. 2015. In vitro antifungal activity of some plant extracts against Fusarium oxysporum f. sp. lycopersici. Asian Journal of Plant Science & Research 5 (1): 22–27.
Rao W.V.B.S., Sinha M.K. 1963. Phosphate dissolving organisms in the soil and rhizosphere. Indian Journal of Agricultural Sciences 33: 272–278.
Riker A.J., Riker R.S. 1936. Introduction to Research on Plant Diseases. John S Swift, St. Louis, USA.
Rudresh D.L., Shivaprakash M.K., Prasad R.D. 2005. Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake and growth and yield parameters of chickpea (Cicer arietinum L.). Canadian Journal of Microbiology 51 (3): 217–222. DOI: https://doi.org/10.1139/w04-127
Saba H., Vibhash D., Manisha M., Prashant K.S., Farhan H., Tauseef A. 2012. Trichoderma–a promising plant growth stimulator and biocontrol agent. Mycosphere 3 (4): 524–531. DOI: https://doi.org/10.5943/mycosphere /3/4/14
Sallam N.M., Eraky A.M., Sallam A. 2019. Effect of Trichoderma spp. on Fusarium wilt disease of tomato. Molecular Biology Reports 46 (4): 4463–4470. DOI: https://doi.org/10.1007/s11033-019-04901-9
Sanoubar R., Barbanti L. 2017. Fungal diseases on tomato plant under greenhouse condition. European Journal of Biological Research 7 (4): 299–308.
Sawant S.D., Sawant I.S. 2010. Improving the shelf life of grapes by pre-harvest treatment with Trichoderma harzianum 5R. Journal of Eco-Friendly Agriculture 5 (2): 179–182.
Schoffelmeer E.A., Klis F.M., Sietsma J.H., Cornelissen B.J. 1999. The cell wall of Fusarium oxysporum. Fungal Genetics and Biology 27 (2–3): 275–282.
Schwyn R., Neilands J.B. 1987. Universal chemical assay for detection and estimation of siderophores. Analytical Biochemistry 160: 47–56. DOI: https://doi.org/10.1016/0003-2697(87)90612-9
Sharma J.P., Kumar S., Bikash D. 2012. Soil application of Trichoderma harzianum and T. viride on biochemical constituents in bacterial wilt resistant and susceptible cultivars of tomato. Indian Phytopathology 65 (3): 264–267.
Shoresh M., Harman G.E., Mastouri F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 48: 21–43. DOI: https://doi.org/10.1146/annurev-phyto-073009-114450
Soesanto L., Utami D.S., Rahayuniati R.F. 2011. Morphological characteristics of four Trichoderma isolates and two endophytic Fusarium isolates. Canadian Journal of Science and Industrial Research 2: 294–306.
Srivastava R., Khalid A., Singh U.S., Sharma A.K. 2010. Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biological Control 53: 24–31. DOI: https://doi.org/10.1016/j.biocontrol.2009.11.012
Surekha C.H., Neelapu N.R.R., Prasad B.S., Ganesh P.S. 2014. Induction of defense enzymes and phenolic content by Trichoderma viride in Vigna mungo infested with Fusarium oxysporum and Alternaria alternata. International Journal of Agricultural Science Research 4 (4): 31–40.
Verma P., Yadav, A.N., Kumar V., Singh D.P., Saxena A.K, 2017. Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. p. 543–580. In: “Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore, Switzerland. DOI: https://doi.org/10.1007/978-981-10-6593-4_22
Vinale F., Sivasithamparam K., Ghisalberti E.L., Woo S.L., Nigro M., Marra R., Lombardi N., Pascale A., Ruocco M., Lanzuise S., Manganiello G. 2014. Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal 8 (1): 127–39. DOI: https://doi.org/10.2174/1874437001408010127
Wightwick A.M., Reichman S.M., Menzies N.W., Allinson G. 2013. The effects of copper hydroxide, captan and trifloxystrobin fungicides on soil phosphomonoesterase and urease activity. Water, Air, & Soil Pollution 224 (12): 1–9. DOI: https://doi.org/10.1007/s11270-013-1703-1
Woo S.L., Ruocco M., Vinale F., Nigro M., Marra R., Lombardi N., Pascale A., Lanzuise S., Manganiello G., Lorito M. 2014. Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal 8 (1): 71–126. DOI: https://doi.org/10.2174/1874437001408010071
Yadav A.N., Kumar V., Dhaliwal H.S., Prasad R., Saxena A.K. 2018. Microbiome in crops: diversity, distribution, and potential role in crop improvement. p. 305–332. In: “Crop Improvement Through Microbial Biotechnology” (A.A. Rastegari, N. Yadav, A.N. Yadav, eds.). Elsevier. DOI: https://doi. org/10.1016/B978-0-444-63987-5.00015-3
Zaim S., Bekkar A.A., Belabid L. 2018. Efficacy of Bacillus subtilis and Trichoderma harzianum combination on chickpea Fusarium wilt caused by F. oxysporum f. sp. ciceris. Archives of Phytopathology and Plant Protection 51 (3–4): 217–226. DOI: https://doi.org/10.1080/03235408.2018.1447896
Zehra A., Meena M., Dubey M.K., Aamir M., Upadhyay R.S. 2017. Activation of defense response in tomato against Fusarium wilt disease triggered by Trichoderma harzianum supplemented with exogenous chemical inducers (SA and MeJA). Brazilian Journal of Botany 40 (3): 651–664. DOI: https://doi.org/10.1007/s40415-017-0382-3
Zhang F., Ge H., Zhang F., Guo N., Wang Y., Chen L., Ji X., Li C. 2016. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiology and Biochemistry 100: 64–74. DOI: https://doi.org/10.1016/j.plaphy.2015.12.017
Zieslin N., Ben Zaken R. 1993. Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiology Biochemistry 31 (3): 333–339.
Go to article

Authors and Affiliations

Arshi Jamil
1

  1. Department of Plant Protection, Aligarh Muslim University, Aligarh, India
Download PDF Download RIS Download Bibtex

Abstract

The post-mining areas due to the difficulties of those, often associated with expensive activities, usually take the form of wasteland. In contrast, unavailable, unused and alien areas the mentality of residents, are identified with empty space. The purpose of the authors was to answer the question: Are post-mining areas becoming empty spaces? Her research basis was changes in the functioning of post-mining areas and empty spaces in Katowice – a city with a long-standing mining tradition. Using GIS tools, a spatial analysis was carried out to determine the empty spaces functions and the perceiving of the post-mining areas by residents or users of a given district nearby.

Go to article

Authors and Affiliations

Agnieszka Majorek
Monika Janiszek
Download PDF Download RIS Download Bibtex

Abstract

This article discusses the classical question whether general principles of law form a separate source of international law. To this end it adopts the method of a posteriori analysis, examining the normative nature of various principles of law one by one. This analysis leads to the conclusion that only some principles have a normative nature, while others lack it.

Go to article

Authors and Affiliations

Przemysław Saganek
Download PDF Download RIS Download Bibtex

Abstract

The efficacy of Benlate 50 WP (benomyl), Bentex T (benomyl + thiram), Ridomil 72 WP (metalaxyl) and Trimangol 80 WP (maneb) applied as foliar spray in the control of cercospora leaf spot of groundnut in the sudan savanna of Nigeria was evaluated during the 2002 and 2003 cropping seasons. Three spray regimes (once, twice and thrice per season) were evaluated. Strip plot design with three replications was used in setting up the experiments. Ex-Dakar, a cercospora leaf spot susceptible groundnut variety was used as planting material. All the four fungicides significantly reduced the incidence and severity of cercospora leaf spot in both seasons. However, the application of Bentex T significantly better reduced the incidence and severity of the disease than the other fungicides. This was followed by application of Benlate 50 WP. Ridomil 72 WP and Trimangol 80 WP which gave moderate control of the disease. Three sprays with fungicides gave better control of the disease than one or two sprays in the season. The highest seed yield of 1 716 kg/ha and 2 263 kg/ha in 2002 and 2003, respectively, were obtained following treatment with Bentex T. The lowest yield of 962 kg/ha and 1 270 kg/ha in 2002 and 2003, respectively, were recorded from the control plots. Also the highest seed yield of 2 028 kg/ha and 2 672 kg/ha in 2002 and 2003, were obtained following three sprays compared to 939 kg/ha and 1 239 kg/ha in 2002 and 2003, respectively, for one spray in the season. The highest haulm yield of 6 131 kg/ha and 6 722 kg/ha in 2002 and 2003 was recorded from plots treated with Bentex T compared to 4 752 kg/ha and 5 166 kg/ha in 2002 and 2003, respectively, obtained from the control. Haulm yield of 6 355 kg/ha and 7 027 kg/ha in 2002 and 2003 were obtained following three sprays compared to 5 088 kg/ha and 5593 kg/ha in 2002 and 2003, respectively, recorded for the control. Bentex Tor Benlate 50 WP could be used to reduce the effect of cercospora leaf spot and improve groundnut production in the sudan savanna of Nigeria.

Go to article

Authors and Affiliations

Bulus Shapshi Bdliya
Kyari Karabi Gwio-Kura
Download PDF Download RIS Download Bibtex

Abstract

The objective of this study is to investigate the change in partition coefficient with a change in the concentration of the solute in a liquid system consisting of two relatively immiscible solvents. To investigate the changes in the partition coefficients, the data of the partition coefficients at infinite dilution and the ternary Liquid-Liquid Equilibrium (LLE) data at finite concentrations of the solute should be consistent. In this study, 29 ternary systems that are found in literature and for which the partition coefficients at infinite dilution and the ternary LLE data cannot be predicted accurately by the universal quasi-chemical (UNIQUAC) model are identified. On the basis of this model, some consistent and inconsistent ternary systems are introduced. Three inconsistent systems, namely hexane-butanol-water, CCl4 (carbon tetrachloride)-PA (propanoic acid)-water, and hexane-PA-water, are chosen for detailed analysis in this study. The UNIQUAC activity coefficient model is used to represent these data over a range of concentrations. The results show large errors, exhibiting the inability of this model to correlate the data. Furthermore, some ternary systems in which cross behavior of solutes between two phases observed are identified.

Go to article

Authors and Affiliations

Akand Islam
Anand Zavvadi
Vinayak Kabadi

This page uses 'cookies'. Learn more