Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this research different methods for measuring water quality indices were conducted to investigate the performance of the newly designed, constructed and operated 9-Nissan water treatment plant, Iraq. Data gathering and implementation took place throughout winter and summer. Water samples were taken periodically, according to the standard method, the re-search was carried out by collecting different random samples for eight months (Jun. 2015–Jan. 2016) and measuring (tur-bidity, total hardness, pH, total dissolved solids, suspended solids, Cl–, Mg2+, Fe2+,NO3–, NH3+) for each sample. Five dif-ferent approaches and methodologies of calculating the water index were applied. The results revealed that the Water Qual-ity Indices varied from 70.55 to 88.24, when applying Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI) and British Columbia water quality index (BCWQI) geometric weighted mean respectively. All the results, from the five approaches indicated good water quality, multiple regression analyses were conducted for turbidity, total hardness and suspended solids, they found that these parameters are strongly related to each other and to other pa-rameters.

Go to article

Authors and Affiliations

Hayder M. Abdul-Hameed
Download PDF Download RIS Download Bibtex

Abstract

Several conjunctive use approaches can be distinguished. Drought cycling of groundwater (GW) usage and storage relies on more surface water (SW) during wetter years and delivers more water from GW during drought years. This method has the benefit of temporal changes in water availability. Additionally, it is usually desirable in areas with internal variability of SW where surface storage of wet-year surpluses is uneconomical, suffer excessive evaporative losses, or cause unacceptable environmental disruption. In previous studies, the purpose of operating the drought cycling was to reduce operating costs. In these studies, the objective function of the proposed model was to minimise the present value cost derived from the system design and operation to satisfy a predefined demand during a finite planning and operation horizon. However, it is important to consider other objectives in operating water resources systems, including minimising water shortages accurately. Hence, in this study, two scenarios were focused on: 1) mi-nimising water shortagages, 2) minimising operational costs. Pareto solutions are then presented with the objectives of minimising costs and water deficit. In this study, the weighting method has been used to extract Pareto options. The results show that reducing costs from 234 to 100 mln USD will increase water shortage from 9.3 to 11.3 mln m3.
Go to article

Bibliography

AFSHAR A., KHOSRAVI M., MOLAJOU A. 2021. Assessing adaptability of cyclic and non-cyclic approach to conjunctive use of ground-water and surface water for sustainable management plans under climate change. Water Resources Management. Vol. 35 p. 3463– 3479. DOI 10.1007/s11269-021-02887-3.

AFSHAR A., KHOSRAVI M., OSTADRAHIMI L., AFSHAR A. 2020. Reliability- based multi-objective optimum design of nonlinear conjunctive use problem; cyclic storage system approach. Journal of Hydrology. Vol. 588, 125109. DOI 10.1016/j.jhydrol.2020.125109.

AFSHAR A., OSTADRAHIMI L., ARDESHIR A., ALIMOHAMMADI S. 2008a. Lumped approach to a multi-period–multi-reservoir cyclic storage system optimization. Water Resources Management. Vol. 22(12) p. 1741–1760. DOI 10.1007/s11269-008-9251-y.

ALIMOHAMMADI S., AFSHAR A., MARIÑO M.A. 2009. Cyclic storage systems optimization: semidistributed parameter approach. Journal – American Water Works Association. Vol. 101(2) p. 90–103. DOI 10.1002/j.1551-8833.2009.tb09842.x.

BORTOLINI L., MAUCIERI C., BORIN M. 2018. A tool for the evaluation of irrigation water quality in the arid and semi-arid regions. Agronomy. Vol. 8(2), 23. DOI 10.3390/agronomy8020023.

BURT O. 1964. The economics of conjunctive use of ground and surface water. Hilgardia. Vol. 36(2) p. 31–111. DOI 10.3733/hilg.v36n02p031.

COE J.J. 1990. Conjunctive use – Advantages, constraints, and examples. Journal of Irrigation and Drainage Engineering. Vol. 116(3) p. 427–443. DOI 10.1061/(ASCE)0733-9437(1990)116:3(427).

DARKO R.O., YUAN S., HONG L., LIU J., YAN H. 2016. Irrigation, a productive tool for food security – A review. Acta Agriculturae Scandinavica. Section B – Soil & Plant Science. Vol. 66(3) p. 191– 206. DOI 10.1080/09064710.2015.1093654.

DINKA M.O. 2019. Groundwater property and composition variability under long-term irrigated area of Wonji Plain, Ethiopia. Journal of Water and Land Development. No. 41(1) p. 37–46. DOI 10.2478/jwld-2019-0025.

FOSTER S., PULIDO-BOSCH A., VALLEJOS Á., MOLINA L., LLOP A., MACDONALD A.M. 2018. Impact of irrigated agriculture on groundwater-recharge salinity: A major sustainability concern in semi-arid regions. Hydrogeology Journal. Vol. 26(8) p. 2781– 2791. DOI 10.1007/s10040-018-1830-2.

GUDE V.G., MAGANTI A. 2021. Desalination of deep groundwater for freshwater supplies. Chapt. 42. In: Global groundwater. Source, scarcity, sustainability, security, and solutions. Elsevier p. 577– 583. DOI 10.1016/B978-0-12-818172-0.00042-6.

HAROU J.J., LUND J.R. 2008. Ending groundwater overdraft in hydrologic-economic systems. Hydrogeology Journal. Vol. 16 (6), 1039. DOI 10.1007/s10040-008-0300-7.

HURD B. H., COONROD J. 2008. Climate change and its implications for New Mexico’s water resources and economic opportunities [online]. NM State University, Agricultural Experiment Station, Cooperative Extension Service, College of Agriculture and Home Economics. [Access 11.02.2021]. Available at: https://aces.nmsu. edu/pubs/research/economics/TR45/welcome.html

KESUMA S.I., MARYUNIANTA Y., MUDA I. 2018. Evaluation of irrigation system to support implementation of food security policy. International Journal of Civil Engineering and Technology. Vol. 9(9) p. 600–614.

KHOSRAVI M., AFSHAR A., MOLAJOU A. 2020. Reliability-based design of conjunctive use water resources systems: Comparison of cyclic and non-cyclic approaches. Journal of Water and Wastewater. Vol. 31(7) p. 90–101. DOI 10.22093/wwj.2020.201234.2924. [In Persian].

KRYSANOVA V., BRONSTERT A., MÜLLER-WOHLFEIL D.I. 1999. Modelling river discharge for large drainage basins: from lumped to distributed approach. Hydrological Sciences Journal. Vol. 44(2) p. 313–331. DOI 10.1080/02626669909492224.

LI P., QIAN H., WU J. 2018. Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, North- West China. International Journal of Water Resources Development. Vol. 34(3) p. 337–353. DOI 10.1080/07900627.2018.1443059.

LOUCKS D.P. 1997. Quantifying trends in system sustainability. Hydrological Sciences Journal. Vol. 42(4) p. 513–530. DOI 10.1080/02626669709492051.

MALEK A., KAHOUL M., BOUGUERRA H. 2019. Groundwater’s physico-chemical and bacteriological assessment: Case study of well water in the region of Sedrata, North-East of Algeria. Journal of Water and Land Development. No. 41(1) p. 91–100. DOI 10.2478/jwld-2019-0032.

MARTÍNEZ-SANTOS P., ANDREU J.M. 2010. Lumped and distributed approaches to model natural recharge in semiarid karst aquifers. Journal of Hydrology. Vol. 388(3–4) p. 389–398.

MOLAJOU A., AFSHAR A., KHOSRAVI M., SOLEIMANIAN E., VAHABZADEH M., VARIANI H.A. 2021a. A new paradigm of water, food, and energy nexus. Environmental Science and Pollution Research. DOI 10.1007/s11356-021-13034-1.

MOLAJOU A., NOURANI V., AFSHAR A., KHOSRAVI M., BRYSIEWICZ A. 2021b. Optimal design and feature selection by genetic algorithm for emotional artificial neural network (EANN) in rainfall-runoff modeling. Water Resources Management. Vol. 35 p. 2369–2384. DOI 10.1007/s11269-021-02818-2.

NAYAK M.A., HERMAN J.D., STEINSCHNEIDER S. 2018. Balancing flood risk and water supply in California: Policy search integrating short- term forecast ensembles with conjunctive use. Water Resources Research. Vol. 54(10) p. 7557–7576. DOI 10.1029/2018WR023177.

PERALTA R.C., AZARMNIA H., TAKAHASHI S. 1991. Embedding and response matrix techniques for maximizing steady-state ground- water extraction: Computational comparison. Groundwater. Vol. 29(3) p. 357–364. DOI 10.1111/j.1745-6584.1991.tb00526.x.

PHILBRICK C.R., KITANIDIS P.K. 1998. Optimal conjunctive-use opera-tions and plans. Water Resources Research. Vol. 34(5) p. 1307– 1316. DOI 10.1029/98WR00258.

PSILOVIKOS A. 2006. Response matrix minimization used in ground-water management with mathematical programming: A case study in a transboundary aquifer in northern Greece. Water Resources Management. Vol. 20(2) p. 277–290.

RICHTER B.D., THOMAS G.A. 2007. Restoring environmental flows by modifying dam operations [online]. Ecology and Society. Vol. 12(1), 12. [Access 10.03.2020]. Available at: http://www.ecolo-gyandsociety.org/vol12/iss1/art12/

SALAZAR J.Z., REED P.M., HERMAN J.D., GIULIANI M., CASTELLETTI A. 2016. A diagnostic assessment of evolutionary algorithms for multi- objective surface water reservoir control. Advances in Water Resources. Vol. 92 p. 172–185. DOI 10.1016/j.advwatres.2016.04.006.

SCHILLING O.S., COOK P.G., BRUNNER P. 2019. Beyond classical observations in hydrogeology: The advantages of including exchange flux, temperature, tracer concentration, residence time, and soil moisture observations in groundwater model calibration. Reviews of Geophysics. Vol. 57(1) p. 146–182. DOI 10.1029/2018RG000619.

SEO S.B., MAHINTHAKUMAR G., SANKARASUBRAMANIAN A., KUMAR M. 2018. Conjunctive management of surface water and groundwater resources under drought conditions using a fully coupled hydrological model. Journal of Water Resources Planning and Management. Vol. 144(9), 04018060. DOI 10.1061/(ASCE)WR.1943-5452.0000978.

VANSTEENKISTE T., TAVAKOLI M., VAN STEENBERGEN N., DE SMEDT F., BATELAAN O., PEREIRA F., WILLEMS P. 2014. Intercomparison of five lumped and distributed models for catchment runoff and extreme flow simulation. Journal of Hydrology. Vol. 511 p. 335–349. DOI 10.1016/j.jhydrol.2014.01.050.

ZEINALI M., AZARI A., HEIDARI M.M. 2020. Multiobjective optimization for water resource management in low-flow areas based on a coupled surface water–groundwater model. Journal of Water Resources Planning and Management. Vol. 146(5), 04020020. DOI 10.1061/(ASCE)WR.1943-5452.0001189.
Go to article

Authors and Affiliations

Tzu-Chia Chen
1
ORCID: ORCID
Tsung-Shun Hsieh
2
Rustem A. Shichiyakh
3
ORCID: ORCID

  1. Dhurakij Pundit University, Bangkok, Thailand
  2. Krirk University, Thanon Ram Intra, Khwaeng Anusawari, Khet Bang Khen, Krung Thep Maha Nakhon 10220, Thailand
  3. Kuban State Agrarian University named after I.T. Trubilin, Department of Management, Krasnodar, Russian Federation
Download PDF Download RIS Download Bibtex

Abstract

Background: Equine sarcoids are the most common neoplasms in horses. Bovine papilloma- virus type 1 (BPV-1) is the main viral type identified in equine sarcoids in Europe.

Objective: The aim of the present study was to genetically evaluate BPV types based on DNA analyses of the CDS of the L1 gene. The presence of BPV DNA was confirmed by Degenerate Oligonucleotide-Primed Polymerase Chain Reaction (DOP PCR) with FAP59/FAP64 consensus primers.

Results: The DNA was detected in 21/40 (52.5%) of clinically diagnosed sarcoids. More than half of 14 isolates (66.7%) shared 100% homology with BPV-1 Deltapapillomavirus 4 isolate 09 asi UK (Acc. No. MF384289) and 99% nucleotide identity with BPV-1 isolate EqSarc1 (Acc. No. JX678969). A comparison with BPV-1 isolate EqSarc1 revealed one silent mutation in C5827T which did not change the aminoacid codon. The remaining 6 isolates (28.6%) shared 100% nucleotide identity with the BPV-1 (Acc. No. X02346) “wild type” isolate, and 1 isolate (4.8%) demonstrated 99% nucleotide identity with BPV-2 (Acc. No. M20219).

Conclusions: Variants of BPV-1 isolate EqSarc1 (Acc. No. JX678969) constitute the most prevalent type of BPV-1 in Polish horses.

Go to article

Authors and Affiliations

A. Szczerba-Turek
J. Siemionek
A. Ras
A. Bancerz-Kisiel
A. Platt-Samoraj
K. Lipczynska-Ilczuk
W. Szweda

This page uses 'cookies'. Learn more