Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents qualitative, Bayesian model used 10 determine some interdependencies between sorption features for mineral soils in southern Poland. Sorption properties are very important, crucial for measure or fertility, nutrient retention capacity, and the capacity to protect groundwater from coutaminution. Cation exchange capacity (CFC) is a commonly applied indicator otihc soils conditions or vulncrahilitv. Base saturation (BS) is an important clement of hazard degree assessment in soils lying within reach of impact acidifying agents. The considered soils represented different valuation classes and differed in their typology. The Bayesian model is used lor interdependences assessment.
Go to article

Authors and Affiliations

Stanisław Gruszczyński
Download PDF Download RIS Download Bibtex

Abstract

Biochar has been extensively studied as a soil amendment to reduce nutrients losses. However, the comparative effectiveness of biochar adsorption capacity for ammonium (NH4-N), nitrate (NO3-N), and phosphate (PO4-P) remains unknown. In the present study, the effects of feedstock (banana stem and coconut shell) and temperature (300, 500, and 700°C) on biochar adsorption ability for NH 4-N, NO 3-N, and PO 4-P were investigated and fitted by three adsorption models, viz Freundlich, Langmuir, and linear. Freundlich (R 2 = 0.95–0.99) and Langmuir (R 2 = 0.91–0.95) models were found suitable for adsorption of NH 4-N. The maximum adsorption capacity (Q m) for coconut shell biochar increased with pyrolysis temperature (Q m = 12.8–15.5 mg g-1) and decreased for banana stem biochar (Q m = 12.9–9.7 mg g-1). In the case of NO 3-N adsorption, Freundlich (R 2 = 0.82–0.99) and linear model (R 2 = 1.00) were found suitable while Langmuir model showed much less contribution, similarly adsorption of PO 4-P, was not supported by these three models. The minimum concentrations required for adsorption of phosphate were recorded as 36, 8, and 3 mg L -1 using pyrolyzed biochar at the temperatures of 300, 500, and 700°C, respectively. These results indicate that the feedstock and pyrolysis temperature, as well as aquatic nutrient concentration, were important factors for the adsorption of inorganic nitrogen and phosphorus.
Go to article

Bibliography

  1. Aghoghovwia, M.P., Hardie, A.G. & Rozanov, A.B. (2020). Characterisation, adsorption and desorption of ammonium and nitrate of biochar derived from different feedstocks. Environmental Technology, 43, pp. 774-787. DOI:10.1080/09593330.2020.1804466
  2. Bao, S.D. (2000). Soil agricultural chemical analysis (3rd Edition), China Agricultural Press, Beijing 2000.
  3. Carpenter, S.R. (2008). Phosphorus control is critical to mitigating eutrophication. PANS, 105, pp. 11039-11040. DOI:10.1073/pnas.0806112105
  4. Chintala, R., Mollinedo, J., Schumacher, T.E., Papiernik, S.K., Malo, D.D., Clay, D.E., Kumar, S. & Gulbrandson, D.W. (2013). Nitrate sorption and desorption in biochars from fast pyrolysis. Microporous and Mesoporous Materials, 179, pp. 250-257. DOI:10.1016/j.micromeso.2013.05.023
  5. Fidel, R.B., Laird, D.A. & Spokas, K.A. (2018). Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent. Scientific Reports, 8, pp. 1-10. DOI:10.1038/s41598-018-35534-w
  6. Freundlich, H.M.F. (1907). Über die Adsorption in Lösungen. Z Phys Chem, 57, pp. 385–470.
  7. Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T. & Liu, H. (2014). Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PloS One, 9, pp. e113888. DOI:10.1371/journal.pone.0113888
  8. Ghodszad, L., Reyhanitabar, A., Maghsoodi, M.R., Lajayer, B.A. & Chang, S.X. (2021). Biochar affects the fate of phosphorus in soil and water: A critical review. Chemosphere, 283, pp. 131176. DOI:10.1016/j.chemosphere.2021.131176
  9. Hale, S.E., Alling, V., Martinsen, V., Mulder, J., Breedveld, G.D. & Cornelissen, G. (2013). The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere, 91, pp. 1612-1619. DOI:10.1016/j.chemosphere.2012.12.057
  10. Hu, X., Zhang, X., Ngo, H.H., Guo, W., Wen, H., Li, C., Zhang, Y. & Ma, C. (2020). Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Science of the Total Environment, 707, pp. 135544. DOI:10.1016/j.scitotenv.2019.135544
  11. Huang, M., Yang, L., Qin, H., Jiang, L. & Zou, Y. (2014). Fertilizer nitrogen uptake by rice increased by biochar application. Biology and Fertility of Soils, 50, pp. 997-1000. DOI:10.1007/s00374-014-0908-9
  12. Hollister, C.C., Bisogni, J.J. & Lehmann, J. (2013). Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover (Zea mays L.) and oak wood (Quercus spp.). Journal of Environmental Quality, 42, pp. 137-144. DOI:10.2134/jeq2012.0033
  13. Hou, J., Huang, L., Yang, Z., Zhao, Y., Deng, C., Chen, Y. & Li, X. (2016). Adsorption of ammonium on biochar prepared from giant reed. Environmental Science and Pollution Research, 23, pp. 19107-19115. DOI:10.1007/s11356-016-7084-4
  14. Jassal, R.S., Johnson, M.S., Molodovskaya, M., Black, T.A., Jollymore, A. & Sveinson, K. (2015). Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality. Journal of Environmental Management, 152, pp. 140-144. DOI:10.1016/j.jenvman.2015.01.021
  15. Kameyama, K., Miyamoto, T., Iwata, Y. & Shiono, T. (2016). Influences of feedstock and pyrolysis temperature on the nitrate adsorption of biochar. Soil Science and Plant Nutrition, 62, pp. 180-184. DOI:10.1080/00380768.2015.1136553
  16. Kim, J., Yoo, G., Kim, D., Ding, W. & Kang, H. (2017). Combined application of biochar and slow-release fertilizer reduces methane emission but enhances rice yield by different mechanisms. Applied Soil Ecology, 117, pp. 57-62. DOI:10.1016/j.apsoil.2017.05.006
  17. Kong, L. L., Liu, W. T. & Zhou, Q. X. (2014). Biochar: an effective amendment for remediating contaminated soil. Reviews of Environmental Contamination and Toxicology, 228, pp. 83-99. DOI: 10.1007/978-3-319-01619-1_4
  18. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38, pp. 2221-2295. DOI:10.1021/ja02268a002
  19. Laird, D., Fleming, P., Wang, B., Horton, R. & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158, pp. 436-442. DOI:10.1016/j.geoderma.2010.05.012
  20. Lu, C. & Tian, H. (2017). Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth System Science Data, 9, pp. 181-192. DOI.org/10.5194/essd-9-181-2017
  21. Luo, L., Wang, G., Shi, G., Zhang, M., Zhang, J., He, J., Xiao, Y., Tian, D., Zhang, Y., Deng, S., Zhou, W., Lan, T. & Deng, O. (2019). The characterization of biochars derived from rice straw and swine manure, and their potential and risk in N and P removal from water. Journal of Environmental Management, 245, pp. 1-7. DOI:10.1016/j.jenvman.2019.05.072
  22. Norman, R. J., Edberg, J. C. & Stucki, J. W. (1985). Determination of nitrate in soil extracts by dual-wavelength ultraviolet spectrophotometry. Soil Science Society of America Journal, 49, pp. 1182-1185. DOI: 10.2136/sssaj1985.03615995004900050022x
  23. Piekarski, J., Dąbrowski, T., Dąbrowski, J. & Ignatowicz, K. (2021). Preliminary studies on odor removal in the adsorption process on biochars produced form sewage sludge and beekeeping waste. Archives of Environmental Protection, 47, pp. 20-28. DOI: 10.24425/aep.2021.137275
  24. Pratiwi, E.P.A., Hillary, A.K., Fukuda, T. & Shinogi, Y. (2016). The effects of rice husk char on ammonium, nitrate and phosphate retention and leaching in loamy soil. Geoderma, 277, pp. 61-68. DOI:10.1016/j.geoderma.2016.05.006
  25. Pulka, J., Wiśniewski, D., Gołaszewski, J. & Białowiec, A. (2016). Is the biochar produced from sewage sludge a good quality solid fuel. Archives of Environmental Protection, 42, pp. 125-134. DOI:10.1515/aep-2016-0043
  26. Takaya, C.A., Fletcher, L.A., Singh, S., Anyikude, K.U. & Ross, A.B. (2016). Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere, 145, pp. 518-527. DOI:10.1016/j.chemosphere.2015.11.052
  27. Tian, H., Lu, C., Melillo, J., Ren, W., Huang, Y., Xu, X., Liu, M., Zhang, C., Chen, G., Pan, S., Liu, J. & Reilly, J. (2012). Food benefit and climate warming potential of nitrogen fertilizer uses in China. Environmental Research Letters, 7, pp. 044020. DOI:10.1088/1748-9326/7/4/044020
  28. Trazzi, P.A., Leahy, J.J., Hayes, M.H. & Kwapinski, W. (2016). Adsorption and desorption of phosphate on biochars. Journal of Environmental Chemical Engineering, 4, pp. 37-46. DOI:10.1016/j.jece.2015.11.005
  29. Vijayaraghavan, K. & Balasubramanian, R. (2021). Application of pinewood waste-derived biochar for the removal of nitrate and phosphate from single and binary solutions. Chemosphere, 278, pp. 130361. DOI:10.1016/j.chemosphere.2021.130361
  30. Xu, D., Cao, J., Li, Y., Howard, A. & Yu, K. (2019). Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: A case study on ammonium adsorption capacity. Waste Management, 87, pp. 652-660. DOI:10.1016/j.wasman.2019.02.049
  31. Ye, L., Zhao, X., Bao, E., Li, J., Zou, Z. & Cao, K. (2020). Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Scientific Reports, 10, pp. 1-11. DOI:10.1038/s41598-019-56954-2
  32. Yin, H., Zhao, W., Li, T., Cheng, X. & Liu, Q. (2018). Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources. Renewable and Sustainable Energy Reviews, 81, pp. 2695-2702. DOI:10.1016/j.rser.2017.06.076
  33. Yin, Q., Zhang, B., Wang, R. & Zhao, Z. (2018). Phosphate and ammonium adsorption of sesame straw biochars produced at different pyrolysis temperatures. Environmental Science and Pollution Research, 25, pp. 4320-4329. DOI:10.1007/s11356-017-0778-4
  34. Zhang, H., Chen, C., Gray, E.M., Boyd, S.E., Yang, H. & Zhang, D. (2016). Roles of biochar in improving phosphorus availability in soils: a phosphate adsorbent and a source of available phosphorus. Geoderma, 276, pp. 1-6. DOI:10.1016/j.geoderma.2016.04.020
  35. Zhao, H., Xue, Y., Long, L. & Hu, X. (2018). Adsorption of nitrate onto biochar derived from agricultural residuals. Water Science and Technology, 77, pp. 548-554. DOI:10.2166/wst.2017.568
  36. Zhao, S., Wang, B., Gao, Q., Gao, Y. & Liu, S. (2017). Adsorption of phosphorus by different biochars. Spectroscopy Letters, 50, pp. 73-80. DOI:10.1080/00387010.2017.1287091
  37. Zhou, L., Xu, D., Li, Y., Pan, Q., Wang, J., Xue, L. & Howard, A. (2019). Phosphorus and nitrogen adsorption capacities of biochars derived from feedstocks at different pyrolysis temperatures. Water, 11, pp. 1559. DOI:10.3390/w11081559
Go to article

Authors and Affiliations

Ganghua Zou
1
Ying Shan
1
Minjie Dai
2
Xiaoping Xin
3
Muhammad Nawaz
4
Fengliang Zhao
1

  1. Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, China
  2. Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Chin
  3. University of Florida, United States
  4. Bahauddin Zakariya University, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

This study examined the process of filtering of infiltrated water containing excessive amounts or iron, manganese, and fulvic acids through two filtration beds-sand and zeolite-exhibiting catalytic properties. The fulvic acids that were added to the filtered water were extracted from mud in Kołobrzeg. The zeolite bed was modified with manganese oxide using our own technology and required periodic regeneration using 0.3% KMnO, solution. Our study showed the fulvic acids' negative effect on the process of water purification. The zeolite bed reduces this effect and is more effective than the quartz sand bed.
Go to article

Authors and Affiliations

Anna M. Anielak
Mariusz Wojnicz
Download PDF Download RIS Download Bibtex

Abstract

The aggregate of various taxonomic groups of microorganisms colonising living organisms is known as the microbiome. The plant microbiome encompasses a wide network of biological, chemical and metabolic interactions between the plant and microorganisms (mainly algae, bacteria and protozoa). The relationships between microbes and peatland plants, particularly carnivorous plants, are a very interesting subject that is still little understood. Microbes colonising carnivorous peatland plants may be present in their traps or on the surface of the plant. Previous research on the relationships between the microbiome composition of carnivorous plants and the external factors influencing it directly and indirectly is still inadequate. There is a lack of review articles analysing the current state of knowledge regarding carnivorous plant–microbiome interactions. This review of the literature is a collection of data on the functioning of the microbiome of carnivorous plants growing in peatland ecosystems. In addition, it summarises the available information on host–microorganism relationships.
Go to article

Authors and Affiliations

Aleksandra Bartkowska
1
ORCID: ORCID
Tomasz Mieczan
1
ORCID: ORCID

  1. University of Life Sciences, Department of Hydrobiology and Protection of Ecosystems, Dobrzańskiego 37, 20-262 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study we compared chydorid cladoceran (Chydoridae) taxa and assemblages from sediments of 6 Polish and 6 Finnish lakes and investigated if the difference in climate of these two countries can be detected in the cladoceran data. The data were analysed in terms of I) average relative proportions of chydorid taxa during the history of each lake and by 2) redundancy analysis (RDA) to explain the present effect of environmental variables (altitude, area, maximum depth, mean annual temperature, mean summer temperature and length of the growing season) on species abundances. The redundancy analysis (RDA) enabled us to distinguish groups of taxa I) with a high thermal preference 2) associated with small, cold-water lakes and 3) associated with shallow lakes. There are clear differences in the dominant chydorid taxa and in the relative proportions of many other chydorid taxa between the two countries since the end of the last glaciation. Although these differences first of all appear to reflect the climatic difference, the influence of many other environmental factors, controlling the living conditions of particular chydorids have been raised and considered. Further studies with larger data are needed before the role of climate can be reliably separated from other elements of environment.
Go to article

Authors and Affiliations

Kaarina Sarmaja-Korjonen
Krystyna Szeroczyńska
Michał Gąsiorowski
Download PDF Download RIS Download Bibtex

Abstract

The experimental research of environmentally friendly refrigerant HFE-7100 condensation in pipe minichannels was conducted. During the investigations of HFE-7100 condensation in a minichannel with internal diameter 2 mm together with visualization of flow patterns was made. Visualization results were compared with existing flow structure maps. The identification of the range of flow patterns occurrence during the condensation process of low-pressure refrigerant HFE-7100 was made. The tests were performed throughout the whole range of condensation process.
Go to article

Authors and Affiliations

Tadeusz Bohdal
Małgorzata Sikora
Katarzyna Widomska
Andrii M. Radchenko
Download PDF Download RIS Download Bibtex

Abstract

Signal analysis performed during surface texture measurement frequently involves applying the Fourier transform. The method is particularly useful for assessing roundness and cylindrical profiles. Since the wavelet transform is becoming a common tool for signal analysis in many metrological applications, it is vital to evaluate its suitability for surface texture profiles. The research presented in this paper focused on signal decomposition and reconstruction during roundness profile measurement and the effect of these processes on the changes in selected roundness profile parameters. The calculations were carried out on a sample of 100 roundness profiles for 12 different forms of mother wavelets using MATLAB. The use of Spearman's rank correlation coefficients allowed us to evaluate the relationship between the two chosen criteria for selecting the optimal mother wavelet.

Go to article

Authors and Affiliations

Włodzimierz Makieła
Stanisław Adamczak
Download PDF Download RIS Download Bibtex

Abstract

Salt stress causes severe reduction in the growth and yield of rice plants. The ability to maintain cellular ion homeostasis is of importance to help the plant survive under salt stress. Salt overly sensitive 1 (SOS1), a plasma membrane Na+/H+ antiporter, has been proven to play critical roles in Na+ exclusion out of the cell, hence contributing to salt tolerance in plants. In this study, we analyzed the natural nucleotide polymorphisms occuring within the entire coding sequence as well as the upstream region of the OsSOS1 gene by comparing the sequences of two contrasting rice genotypes, namely, Nipponbare (salt-sensitive) and Pokkali (salt-resistant). In total, six nucleotide polymorphisms were identified in the coding sequence, and 44 nucleotide substitutions, 225-bp-insertion and 65-bp-deletion were observed in the upstream region of the OsSOS1 gene. Futher in silico analysis revealed that two out of six nucleotide polymorphisms in the coding sequence were non-synonymous (A1600G, G2204A) which led to two amino acid substitutions (T534A, S735N, respectively) positioned in the C-terminal domain of OsSOS1 transporter, but caused no effect on protein properties. In the upstream region of OsSOS1 gene, 44 single nucleotide polymorphisms and two INDELs were identified, in which nucleotide substitutions at position -1392, -1389, -822, -583, +57 and an insertion at position -1035 caused change in cis-regulatory elements. Analysis of OsSOS1 expression revealed that salt induced the expression of the gene in the roots, but not in the leaves in both investigated rice cultivars.
Go to article

Authors and Affiliations

Phuc Thi Do
Hoa Quynh Pham
Ha Manh Nguyen
Diep Hong Le

This page uses 'cookies'. Learn more