Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

If we want to provide the efficient training intervention to increase the duration of using hearing protection devices (HPDs) by workers, we need a tool that can estimate the person’s hearing threshold taking into account noise exposure level, age, and work history, and compare them with audiometry to find out the percent reduction of workers hearing loss.

First, the workers noise exposure level was determined according to ISO 9612, then 4000 Hz audiometry was done to find age and work history. On basis of ISO 1999 the hearing threshold was estimated and if the hearing protection device was not used continuously and correctly, the hearing protection device’s actual performance was reduced adjusted with person’s audiometry. After training intervention, the estimate was done again and was compared with the adjusted audiometry.

According to ISO 1999 standard estimation results, the percent reduction of the workers hearing loss level was 6.48 dB in intervention group. This level remained unchanged in control group. The mean score of hearing threshold estimation (standard ISO 1999) was statistically more significant than mean score of hearing threshold (p-value ¡ 0.001). The results show not significant change in control group due to lack of changing of noise exposure level.

In regards to the results of hearing threshold estimation based on ISO 1999 and comparing with workers audiometry, it can be seen that BASNEF training intervention increases the duration of using the HPDs and it could be effective in reducing hearing threshold related to noise.

Go to article

Authors and Affiliations

Rohollah Fallah Madvari
Fereydoon Laal
Milad Abbasi
Mohammad Reza Monazzam
Alireza Fallah Madvari
Download PDF Download RIS Download Bibtex

Abstract

Channel coding provides numerous advantages to digital communications. One of such advantages is error correcting capabilities. This, however, comes at the expense of coding rate, which is a function of the codebook’s cardinality |C| or number of coded information bits and the codeword length M. In order to achieve high coding rate, we hereby report a channel coding approach that is capable of error correction under power line communications (PLC) channel conditions, with permutation coding as the coding scheme of choice. The approach adopts the technique of unequal error correction for binary codes, but with the exception that non-binary permutation codes are employed here. As such, certain parts of the information bits are coded with permutation symbols, while transmitting other parts uncoded. Comparisons with other conventional permutation codes are presented, with the proposed scheme exhibiting a relatively competitive performance in terms of symbol error rate.
Go to article

Authors and Affiliations

Kehinde Ogunyanda
1
Theo G. Swart
1
Opeyemi O. Ogunyanda
1

  1. Center for Telecommunications, Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg, South Africa
Download PDF Download RIS Download Bibtex

Abstract

Monitoring activities on the dynamics of water shrinkage at Lake Limboto are essential to the lake’s ecosystem’s recovery. A remote sensing technology functions to monitor the dynamics of lake inundation area; this allows one to produce a comprehensive set of spatial and temporal data. Such complex satellite dataset demands extra time, greater storage resources, and greater computing capacity. The Google Earth Engine platform emerges as the alternative to tackle such problems. The present study aims to explore the capability of Google Earth Engine in formulating spatial and temporal maps of the inundation area at Lake Limboto. A total of 345 scenes of Landsat image on the study area (available during the period of 1989–2019) were involved in generating a quick inundation area map of the lake. The whole processes (pre-processing, processing, analysing, and evaluating) were automatized by using the Google Earth Engine interface. The evaluation of mapping result accuracy indicated that the average score of F1-score and Intersection over Union (IoU) was at 0.88 and 0.91, respectively. Moreover, the mapping results of the lake’s inundation area from 1989 to 2019 showed that the inundation area tended to decrease significantly in size over time. During the period, the lake’s area also shrank from 3023.8 ha in 1989 to 1275.0 ha in 2019. All in all, the spatiotemporal information about the changes in lake area may be treated as a reference for decision-making processes of lake management in the future.
Go to article

Bibliography

ACHARYA T., SUBEDI A., LEE D. 2018. Evaluation of water indices for surface water extraction in a Landsat 8 scene of Nepal. Sensors. Vol. 18, 2580. DOI 10.3390/s18082580.
AMANI M., GHORBANIAN A., AHMADI S.A., KAKOOEI M., MOGHIMI A., MIRMAZLOUMI S.M., ..., BRISCO B. 2020. Google Earth Engine Cloud Computing Platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Vol. 13 p. 5326–5350. DOI 10.1109/JSTARS.2020.3021052.
BOLANOS S., STIFF D., BRISCO B., PIETRONIRO A. 2016. Operational surface water detection and monitoring using Radarsat 2. Remote Sensing. Vol. 8, 285. DOI 10.3390/rs8040285.
BUMA W., LEE S.-I., SEO J. 2018. Recent surface water extent of Lake Chad from multispectral sensors and GRACE. Sensors. Vol. 18, 2082. DOI 10.3390/s18072082.
CHEN Z., YANG G. 2013. Analysis of drought hazards in North China: Distribution and interpretation. Natural Hazards. Vol. 65 p. 279– 294. DOI 10.1007/s11069-012-0358-3.
CLINTON N. 2017. Otsu’s method for image segmentation [online]. [Access 28.07.2020]. Available at: https://medium.com/google-earth/otsus-method-for-image-segmentation-f5c48f405e
DINKA M.O., CHAKA D.D. 2019. Analysis of land use/land cover change in Adei watershed, Central Highlands of Ethiopia. Journal of Water and Land Development. No. 41 (IV–VI) p. 146–153. DOI 10.2478/jwld-2019-0038.
DU Y., ZHANG Y., LING F., WANG Q., LI W., LI X. 2016. Water bodies’ mapping from Sentinel-2 imagery with modified Normalized Difference Water Index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sensing. Vol. 8. Iss. 4, 354 p. 1–19. DOI 10.3390/rs8040354.
ERAKU S., AKASE N., KOEM S. 2019. Analyzing Limboto Lake inundation area using Landsat 8 OLI imagery and rainfall data. Journal of Physics: Conference Series. Vol. 1317, 012111. DOI 10.1088/1742-6596/1317/1/012111.
Google Earth Engine 2020. NDVI, mapping a function over a collection, quality mosaicking [online]. [Access 02.08.2020]. Available at: https://developers.google.com/earth-engine/tutorials/tutorial _api_06.
GORELICK N., HANCHER M., DIXON M., ILYUSHCHENKO S., THAU D., MOORE R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment. Vol. 202 p. 18–27. DOI 10.1016/j.rse.2017.06.031.
HAMZAH R., MATSUSHITA B., TAKEHIKO F. 2018. Long-term monitoring of lake surface area change in Indonesia from global surface water data [online]. In: 17th World Lake Conference. Ibaraki, Japan p. 600–602. [Access 02.08.2020]. Available at: https://www.pref.ibarakijp/soshiki/seikatsukankyo/kasumigauraesc/04_ken- kyu/kaigi/docments/kosyou/17/ronbun/WLC17procidings_O6 _14.pdf
HARDY A., ETTRITCH G., CROSS D.E., BUNTING P., LIYWALII F., SAKALA J., SILUMESII A., SINGINI D., SMITH M., WILLIS T., THOMAS C.J. 2019. Automatic detection of open and vegetated water bodies using Sentinel 1 to map African malaria vector mosquito breeding habitats. Remote Sensing. Vol. 11, 593. DOI 10.3390/rs11050593.
HUANG C., CHEN Y., ZHANG S., WU J. 2018. Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Reviews of Geophysics. Vol. 56 p. 333–360. DOI 10.1029/2018RG000598.
JASKUŁA J., SOJKA M.. 2019. Assessing spectral indices for detecting vegetative overgrowth of reservoirs. Polish Journal of Environ- mental Studies. Vol. 28. No. 6 p. 4199–4211. DOI 10.15244/pjoes/ 98994.
JIANG H., FENG M., ZHU Y., LU N., HUANG J., XIAO T. 2014. An automated method for extracting rivers and lakes from Landsat imagery. Remote Sensing. Vol. 6. Iss. 6 p. 5067–5089. DOI 10.3390/rs6065067.
JICA 2002. The study on flood control and water management Limboto-Bolango-Bone Basin in The Republic of Indonesia [online]. Final report. Vol. 1. Summary. Japan International Cooperation Agency. [Access 02.08.2020]. Available at: https://openjicareport.jica.go.jp/pdf/11709730_01.pdf
KENDALL M.G. 1975. Rank correlation methods. 4th ed. London. Griffin. ISBN 0852641990 pp. 202.
KIMIJIMA S., SAKAKIBARA M., AMIN A.K.M.A., NAGAI M., INDRIATI A.Y. 2020. Mechanism of the rapid shrinkage of Limboto Lake in Gorontalo, Indonesia. Sustainability. Vol. 12. Iss. 22, 9598. DOI 10.3390/su12229598.
KLHK 2015. Gerakan penyelamatan danau Limboto (Germadan Limboto) [Lake rescue movement of Limboto Lake]. Gorontalo. Kementerian Lingkungan Hidup dan Kehutanan pp. 91.
KOEM S., RUSIYAH 2017. Monitoring of drought events in Gorontalo Regency. IOP Conference Series: Earth and Environmental Science. Vol. 98, 012053. DOI 10.1088/1755-1315/98/1/012053.
KOEM S., RUSIYAH 2018. Karakteristik spasiotemporal kekeringan meteorologi di Kabupaten Gorontalo tahun 1981–2016 [Spatio-temporal characteristics of meteorological drought in Gorontalo Regency in 1981–2016]. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan. Vol. 8 p. 355–364. DOI 10.29244/jpsl.8.3.355-364.
KUMAR L., MUTANGA O. 2018. Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing. Vol. 10, p. 1509. DOI 10.3390/rs10101509.
MANN H.B. 1945. Nonparametric tests against trend. Econometrica. Vol. 13. No. 3 p. 245–259. DOI 10.2307/1907187.
MAXWELL A.E., WARNER T.A. 2020. Thematic classification accuracy assessment with inherently uncertain boundaries: An argument for Center-Weighted Accuracy Assessment Metrics. Remote Sensing. Vol. 12, 1905. DOI 10.3390/rs12121905.
MCFEETERS S.K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing. Vol. 17 p. 1425–1432. DOI 10.1080/01431169608948714.
NGUYEN U.N.T., PHAM L.T.H., DANG T.D. 2019. An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand. Environmental Monitoring and Assessment. Vol. 191, 235. DOI 10.1007/s10661-019-7355-x.
OKORO S.U., SCHICKHOFF U., BÖHNER J., SCHNEIDER U.A. 2016. A novel approach in monitoring land-cover change in the tropics: Oil palm cultivation in the Niger Delta, Nigeria. DIE ERDE – Journal of the Geographical Society of Berlin. Vol. 147(1) p. 40–52. DOI 10.12854/erde-147-3.
OTSU N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cyber- netics. Vol. 9 p. 62–66. DOI 10.1109/TSMC.1979.4310076.
PEKEL J.-F., COTTAM A., GORELICK N., BELWARD A.S. 2016. High- resolution mapping of global surface water and its long-term changes. Nature. Vol. 540 p. 418–422. DOI 10.1038/nature20584.
PUTRA S.S., HASSAN C., DJUDI, SURYATMOJO H. 2013. Reservoir saboworks solutions in Limboto Lake Sedimentations, Northern Sulawesi, Indonesia. Procedia Environmental Sciences. Vol. 17 p. 230–239. DOI 10.1016/j.proenv.2013.02.033.
REZZAG BARA C., DJIDEL M., MEDJANI F., LABAR S. 2019. Spatiotemporal evolution of land surface temperature of Lake Oubeira catch-ment, northeastern Algeria. Journal of Water and Land Development. No. 43 (X–XII) p. 151–157. DOI 10.2478/jwld-2019-0073.
ROUSE W., HAAS H., DEERING W. 1973. Monitoring vegetation systems in the great plains with ERTS. In: 3rd Earth Resources Technology Satellite-1 Symposium. NASA. Vol. 1 p. 309–317.
SEN P.K. 1968. Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association. Vol. 63(324) p. 1379. DOI 10.2307/2285891.
STUHLER S.C., LEITERER R., JOERG P.C., WULF H., SCHAEPMAN M.E. 2016. Generating a cloud-free, homogeneous Landsat-8 mosaic of Switzerland using Google Earth Engine. DOI 10.13140/RG.2.1.2432.0880.
SUBEHI L., WIBOWO H., JUNG K. 2016. Characteristics of rainfall- discharge and water quality at Limboto Lake, Gorontalo, Indonesia. Journal of Engineering and Technological Sciences. Vol. 48 p. 288–300. DOI 10.5614/j.eng.technol.sci.2016.48.3.4.
TAMIMINIA H., SALEHI B., MAHDIANPARI M., QUACKENBUSH L., ADELI S., BRISCO B. 2020. Google Earth Engine for geo-big data applica-tions: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing. Vol. 164 p. 152–170. DOI 10.1016/j.isprsjprs.2020.04.001.
TRISAKTI B. 2013. Kajian penentuan luas permukaan air danau dan sebaran vegetasi air dengan metoda penginderaan jauh [Study of the lake water surface area and aquatic vegetation distribution determination based on remote sensing method]. LIMNOTEK. Vol. 20. No. 1 p. 10–20.
UMAR I., MARSYOYO A., SETIAWAN B. 2018. Analisis Perubahan Penggunaan Lahan Sekitar Danau Limboto Di Kabupaten Gorontalo [Analysis of changes in land use around Limboto Lake in Gorontalo District]. Jurnal Tata Kota dan Daerah. Vol. 10. No. 2 p. 77–90. DOI 10.21776/ub.takoda.2018.010.02.3.
WANG C., JIA, M., CHEN N., WANG W. 2018. Long-term surface water dynamics analysis based on Landsat imagery and the Google Earth Engine platform: A case study in the Middle Yangtze River Basin. Remote Sensing. Vol. 10, 1635. DOI 10.3390/rs10101635.
WANG Y., LI Z., ZENG C., XIA G.-S., SHEN H. 2020. An urban water extraction method combining deep learning and Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Vol. 13 p. 769–782. DOI 10.1109/JSTARS.2020.2971783.
WANG Y., MA J., XIAO X., WANG X., DAI S., ZHAO B. 2019. Long-term dynamic of Poyang Lake surface water: A mapping work based on the Google Earth Engine cloud platform. Remote Sensing. Vol. 11, 313. DOI 10.3390/rs11030313.
WU G., LIU Y. 2014. Satellite-based detection of water surface variation in China’s largest freshwater lake in response to hydro-climatic drought. International Journal of Remote Sensing. Vol. 35 p. 4544–4558. DOI 10.1080/01431161.2014.916444.
YUNGINGER R., BIJAKSANA S., DAHRIN D., ZULAIKAH S., HAFIDZ A., KIRANA K., SUDARNINGSIH S., MARIYANTO M., FAJAR S. 2018. Lithogenic and anthropogenic components in surface sediments from Lake Limboto as shown by magnetic mineral characteristics, trace metals, and REE geochemistry. Geosciences. Vol. 8 p. 116. DOI 10.3390/geosciences8040116.
ZHOU G., MA Z., SATHYENDRANATH S., PLATT T., JIANG C., SUN K. 2018. Canopy reflectance modeling of aquatic vegetation for algorithm development: Global sensitivity analysis. Remote Sensing. Vol. 10. Iss. 6, 837 p. 1–22. DOI 10.3390/rs10060837.
ZOU Z., DONG J., MENARGUEZ M.A., XIAO X., QIN Y., DOUGHTY R.B., HOOKER K.V., HAMBRIGHT K.D. 2017. Continued decrease of open surface water body area in Oklahoma during 1984–2015. Science of The Total Environment. Vol. 595 p. 451–460. DOI 10.1016/j.scitotenv.2017.03.259.
Go to article

Authors and Affiliations

Rakhmat Jaya Lahay
1
ORCID: ORCID
Syahrizal Koem
1
ORCID: ORCID

  1. Universitas Negeri Gorontalo, Department of Earth Science and Technology, B.J Habibie Street, Bone Bolango, 96183, Gorontalo, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an anatomical study involving rare variations in the pterygospinous bridges found in Mongolian skulls. These structures extend between the lateral pterygoid plate and the sphenoid spine. Particularly interesting is the division of these bridges into two distinct parts of the similar length. The junctions within these structures resemble morphological patterns characteristic for the plain and zigzag sutures, which articulate the cranial bones.
Go to article

Authors and Affiliations

Janusz Skrzat
1
Grzegorz Goncerz
1

  1. Department of Anatomy, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article presents results of the analysis of 3 sediment cores taken from the bottom of Pomeranian Bay, southern Baltic Sea. These results are part of a larger project that aims to determine the characteristics and rate of the Atlantic marine ingression in the Pomeranian Bay area. The main geochemical elements and diatom assemblages from the cores were identified, revealing lacustrine sediments deposited during the time of Ancylus Lake and marine sediments deposited during the Littorina transgression. Distinct changes in the geochemical composition and diatom assemblages suggest that the Littorina transgression had a very large impact on the environment of Pomeranian Bay.

Go to article

Authors and Affiliations

Robert Kostecki
Beata Janczak-Kostecka

This page uses 'cookies'. Learn more