Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Conditions for the positivity of linear electrical circuits composed of resistances, coils, capacitors and voltage (current) sources are established. It is shown that: 1) the electrical circuit composed of resistors, coils and voltage source is positive for any values of their resistances, inductances and source voltages if and only if the number of coils is less or equal to the number of its linearly independent meshes, 2) the electrical circuit is not positive for any values of its resistances, capacitances and source voltages if each its branch contains resistor, capacitor and voltage source, 3) the positive n-meshes electrical circuit with only one inductance in each linearly independent mesh is reachable if all resistances of branches belonging to two linearly independent meshes are zero.

Go to article

Authors and Affiliations

Tadeusz Kaczorek
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a model of the sealing process in kinematic pairs of hydraulic cylinders with elastic seals and an analytical form of this model based on the results obtained by the author. The prepared model distinguishes rheological parameters, allowing one to determine the criteria of a correct course of the sealing process and to forecast the operating time for the seals. Exemplary test results and their analysis are presented, too. It results from the analysis that leakage efficiency through the seal is dependent on the sealing pressure determined by the parameter 8, and it is unstable in relation to this parameter. Basing on this fact, the author determined conditions of hydrodynamic convection of the sealing and elaborated an analytical model of the sealing process including roughness of the piston rod surface as well as the seal flexibility.
Go to article

Authors and Affiliations

Czesław Pazoła

This page uses 'cookies'. Learn more