Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the article is to present international economic integration as one of the mega trends that infl uence on the redefi nition of the factors of socio-economic development. The research procedure includes three stages. In the fi rst stage, the most important modern mega trends of socio-economic changes are organized in a synthetic way. In the second step, the genesis and changes of the process of international economic integration are elaborated. In the third stage, the infl uence of international economic integration on the changes of factors of socio-economic development is systematized. This study is being carried out as part of the FORSED research project (http://www.forsed.amu.edu.pl) fi nanced by the National Science Center as part of OPUS competition 10 – 2015/19/B/HS5/00012: New challenges of regional policy in shaping the socio-economic development factors of less developed regions.

Go to article

Authors and Affiliations

Paweł Churski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents two analytical solutions namely for Fanning friction factor and for Nusselt number of fully developed laminar fluid flow in straight mini channels with rectangular cross-section. This type of channels is common in mini- and microchannel heat exchangers. Analytical formulae, both for velocity and temperature profiles, were obtained in the explicit form of two terms. The first term is an asymptotic solution of laminar flow between parallel plates. The second one is a rapidly convergent series. This series becomes zero as the cross-section aspect ratio goes to infinity. This clear mathematical form is also inherited by the formulae for friction factor and Nusselt number. As the boundary conditions for velocity and temperature profiles no-slip and peripherally constant temperature with axially constant heat flux were assumed (H1 type). The velocity profile is assumed to be independent of the temperature profile. The assumption of constant temperature at the channel’s perimeter is related to the asymptotic case of channel’s wall thermal resistance: infinite in the axial direction and zero in the peripheral one. It represents typical conditions in a minichannel heat exchanger made of metal.
Go to article

Authors and Affiliations

Jarosław Mikielewicz
Witold Rybiński
Download PDF Download RIS Download Bibtex

Abstract

Based on the author’s assembled field materials and analysis of historical, folkloristic and ethnological as well as ethnolinguistic literature, the article provides specific research into the symbolic functionality of honey in the ritual and mythological semiosphere of Ukrainians of the Carpathians and Precarpathian region, in particular – the ritualism of Christmas Eve as the prologue to Christmas. Established has been the extremely high semiotic status of honey and the presence of a stable range of polysemantic meanings. The multi‐vector semantics of honey, which was a universal symbol of sweetness, is revealed; a mediator with the afterlife; a container of the sacred; a bearer of the healing properties and connotations of the enchantment, an apotropaic, a cultural symbol that nominated the boundaries of “his”, organized by the presence of the human space. The ritual practice of tasting honey (as a separate dish or as a component of other dishes and drinks) at a pre‐Christmas dinner is considered universal not only for Ukrainians, but for many European nations.
Go to article

Authors and Affiliations

Ulyana Movna
ORCID: ORCID

Download PDF Download RIS Download Bibtex

Abstract

This paper discusses the idea of combining a photovoltaic system with a heating film system to heat residential buildings. The analysis was performed for a newly built single-family house in Warsaw or its vicinity. The authors have selected the size of the photovoltaic installation, calculated the costs incurred by the user for the installation of a hybrid system, which were additionally compared to the cost of installing a gas installation (gas boiler) used for heating the building. The calculations were made for a single-family house with a usable area of 120 m2, the demand for utility energy for heating purposes in the newly built house was in the range of 10–50 kWh/m2/year. Based on the adopted parameters, the authors evaluated the economic efficiency of both investments (solutions) determining their net present values (NPV). The analysis takes the energy needed only for heating purposes into account.
NPV for a heating system with a gas boiler with an investment outlay EUR 8,000 for buildings purchased for utility energy in the amount of 20 kWh/m2/year and the price for natural gas EUR 0.04 /kWh will be EUR –10,500 (for 15 years, discount rate r = 3%). For the same thermal needs (energy required) of the building, NPV for heating films + photovoltaic (HF + PV) will amount to – EUR 8,100. Comparing the variants will get a EUR 2,400 higher NPV for HF + PV. With a utility energy demand for heating purpose of 50 kWh/m2/year and gas heating installation investment cost of EUR 7,000, the NPV for both variants will be equal for natural gas price = EUR 0.035/kWh.
Go to article

Bibliography

Chwieduk, D. 2009. Recommendation on modelling of solar energy incident on a building envelope. Renewable Energy 34(3), pp. 736–741.
Columbus Energy 2021. Photovoltaic. [Online] https://columbusenergy.pl/ [Accessed: 2021-02-15].
COM(2020) 562 final. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Stepping up Europe’s 2030 climate ambition. Investing in a climate-neutral future for the benefit of our people. [Online] https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0562 [Accssessed: 2021- -05-14].
Gas boilers 2021. [Online] https://kotly.pl/kotly/ [Accessed: 2021-02-16].
Journal of Laws 2015, item 376. Ordinance of the Minister of Infrastructure and Development of February 27, 2015 On the methodology for determining the energy performance of a building or part of a building and energy performance certificates (Dz.U. 2015, poz. 376, Rozporządzenie Ministra Infrastruktury i Rozwoju z dnia 27 lutego 2015 r. W sprawie metodologii wyznaczania charakterystyki energetycznej budynku lub części budynku oraz świadectw charakterystyki energetycznej). Warszawa (in Polish).
JRC European Comission 2017. Photovoltaic Geographical Information System (PVGIS).
Koval et al. 2019a – Koval, V., Sribna, Y. and Gaska, K. 2019. Energy Cooperation Ukraine-Poland to Strengthen Energy Security. E3S Web of Conferences 132, DOI: 10.1051/e3sconf/201913201009.
Koval et al. 2019b – Koval, V., Sribna, Y., Mykolenko, O. and Vdovenko, N. 2019. Environmentalconcept of energy security solutions of local communities based on energy logistics. 19th International Multidisciplinary Scientific GeoConference SGEM 2019, 19(5.3), pp. 283–290, DOI: 10.5593/sgem2019/5.3/S21.036. Kryzia, D. and Pepłowska, M. 2019. The impact of measures aimed at reducing low-stack emission in Poland on the energy efficiency and household emission of pollutants. Polityka Energetyczna – Energy Policy Journal 22(2), pp. 121–132, DOI: 10.33223/epj/109912.
Kryzia et al. 2020 – Kryzia, D., Kopacz, M. and Kryzia, K. 2020. The Valuation of the Operational Flexibility of the Energy Investment Project Based on a Gas-Fired Power Plant. Energies 13(7), DOI: 10.3390/en13071567.
Matuszewska et al. 2017 – Matuszewska, D., Kuta, M. and Górski, J. 2017. Cogeneration – Development and prospect in Polish energy sector. E3S Web of Conferences 14, 01021, DOI: 10.1051/e3sconf/ 20171401021.
Ministry of Climate 2020. Ministry of Climate and Environment 2020. Poland’s energy policy until 2040 (Polityka energetyczna Polski do 2040 r.). [Online] https://www.gov.pl/web/klimat/minister- kurtyka-polityka-energetyczna-polski-do-2040-r-udziela-odpowiedzi-na-najwazniejsze-wyzwania- stojace-przed-polska-energetyka-w-najblizszych-dziesiecioleciach [Accessed: 2021-01-21] (in Polish).
Ministry of Development 2019. Typical Reference Year (Typowy rok referencyjny). [Online] https://archiwum.miir.gov.pl/strony/zadania/budownictwo/charakterystyka-energetyczna-budynkow/dane-do-obliczen-energetycznych-budynkow-1/ [Accessed: 2020-08-10] (in Polish).
Mirowski, T. and Sornek, K. 2015. Potential of prosumer power engineering in Poland by example of micro PV installation in private construction (Potencjał energetyki prosumenckiej w Polsce na przykładzie mikroinstalacji fotowoltaicznych w budownictwie indywidualnym). Polityka Energetyczna – Energy Policy Journal 18(2), pp. 73–84 (in Polish).
Natural Gas Price 2021. [Online] http://www.cena-pradu.pl/gaz.html [Accessed: 2021-02-15].
Shmygol et al. 2020 – Shmygol, N., Schiavone, F., Trokhymets, O., Pawliszczy, D., Koval, V., Zavgorodniy, R. and Vorfolomeiev, A. 2020. Model for assessing and implementing resource-efficient strategy of industry. CEUR Workshop Proceedings, 2713.
Szurlej et al. 2014 – Szurlej, A., Kamiński, J., Janusz, P., Iwicki, K. and Mirowski, T. 2014. Gas-fired power generation in Poland and energy security (Rozwój energetyki gazowej w Polsce a bezpieczeństwo energetyczne). Rynek Energii 6, pp. 33–38 (in Polish).
Tytko, R. 2019. Heating the building by foil and electrical matts (Ogrzewanie budynku za pomocą folii i mat elektrycznych). Aura 8, pp. 18–21 (in Polish).
Żelazna et al. 2020 – Żelazna, A., Gołębiowska, J., Zdyb, A. and Pawłowski, A. 2020. A hybrid vs. on-grid photovoltaic system: Multicriteria analysis of environmental, economic, and technical aspects in life cycle perspective. Energies 13(15), 3978, DOI: 10.3390/en13153978.
Go to article

Authors and Affiliations

Krystian Majchrzak
1 2
Monika Pepłowska
3
ORCID: ORCID
Piotr Olczak
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  2. Instaway Institute, Warszawa, Poland
  3. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The mutual influence of fatigue processes, abrasive wear and corrosion of chain links on the functional properties of mining round link chains has been presented in this paper. Selected results of experimental investigations in the field of synergic impact of these destructive processes on the operational durability of mining chains have also been presented. The emphasis was given to the necessity of a comprehensive consideration of destructive processes that occur in various conditions of use of round link chains applied in mining machines.
Go to article

Bibliography

[1] www.fasing.pl, accessed: 14.06.2018
[2] E . Remiorz, S. Mikuła, Podstawowe formy degradacji własności użytkowych łańcuchów ogniwowych górniczych stosowanych w maszynach ścianowych. Maszyny Górnicze 35 (3), (2017).
[3] S. Mikuła, Trwałość zmęczeniowa cięgien łańcuchowych górniczych maszyn urabiających i transportowych. Prace Badawcze CMG Komag, Gliwice (1978).
[4] S. Kocańda, Zmęczeniowe niszczenie metali. WNT , Warszawa (1972).
[5] P .M. Wnuk, Pojęcia i zależności w liniowej i nieliniowej mechanice pękania. Eksploatacja i Niezawodność – Maintenance and Reliability 6 (1) (2004).
[6] J. Gubała, E. Zięba, Wykorzystanie mechaniki pękania do określenia wytrzymałości konstrukcji w warunkach oddziaływania korozyjnego. Przegląd Mechaniczny 35 (1) (1976).
[7] K . Kotwica, K. Furmanik, B. Scherf, Wpływ warunków pracy na zużycie i trwałość cięgien łańcuchowych zgrzebłowych przenośników ścianowych w wybranych kopalniach węgla kamiennego. Przegląd Górniczy 67 (11), (2011).
[8] J. Hankus, M. Szot, A. Pytlik, K. Paradowski, Badania łańcuchów ogniwowych górniczych. Materiały Sympozjum Szkoleniowego Europejskiego Studium Menedżerskiego, Jastrzębie Zdrój (2006).
[9] H . Kania, Kształtowanie struktury oraz odporność korozyjna powłoki Zn-Al otrzymanych metodą metalizacji zanurzeniowej. Wydawnictwo Politechniki Śląskiej, Gliwice (2017).
[10] M. Dolipski , E. Remiorz, P. Sobota, J. Osadnik, Komputerowe badania wpływu zużycia den gniazd i flanki zębów bębna na położenie ogniw w gniazdach bębna łańcuchowego. Mechanizacja i Automatyzacja Górnictwa 49 (4), (2011).
[11] M. Dolipski, E. Remiorz, P. Sobota, Determination of dynamic loads of sprocket drum teeth and seats using mathematical model of a scraper conveyor. Arch. Min. Sci. 57 (4), (2012).
[12] M. Dolipski, P. Cheluszka, E. Remiorz, P. Sobota, Innowacyjne górnicze przenośniki zgrzebłowe. Wydawnictwo Politechniki Śląskiej, Gliwice (2017).
[13] A .N. Wieczorek, Influence of Shot Peening on Abrasion Wear in Real Conditions of Ni-Cu-Ausferritic Ductile Iron. Arch Metall. Mater. 61 (4), (2016).
[14] A .N. Wieczorek, Comparative studies on the wear of ADI alloy cast irons as well as selected steels and surfacehardened alloy cast steels in the presence of abrasive. Arch. Metall. Mater. 62 (1), (2017).
[15] S. Mikuła, Ł. Gajda, Metody badań zużycia ściernego łańcuchów górniczych. Zeszyty Naukowe Politechniki Śląskiej, s. Górnictwo 93 (1978).
[16] E . Remiorz, S. Mikuła, Diagnosis of round link chains resistance to abrasive wear. Technicka Diagnostika 27 (1), (2018).
[17] B . Pawlukiewicz, J. Wiederman, Mechanizm niszczenia ogniw łańcuchów górniczych podczas eksploatacji. Inżynieria Materiałowa 19 (5), (1998).
[18] E . Remiorz, S. Mikuła, Eksploatacyjna diagnostyka ogniwowych łańcuchów górniczych stosowanych w pociągowych układach łańcuchowych maszyn ścianowych. Maszyny Górnicze 36 (1), (2018).
Go to article

Authors and Affiliations

Eryk Remiorz
1
ORCID: ORCID
Stanisław Mikuła
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation, Department of Mining Mechanization and Robotisation, 2 Akademicka Str., 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Despite many technological possibilities, proper sanitation of sludge creates problems to their natural use. Thus, new solutions are still being looked for. Liming is one of the methods for sludge sanitation, however, rather expensive one. Seeking the substitute of high calcium content and non-toxic for environment has led to investigations on the application of mineral wastes - ashes from semi-dry sulfur removal from flue gases in the "Opole" power plant for sludge sanitation purposes. Ash was mixed with sludge in various proportions. After 3 days, the microbiological exams of the mixtures were carried out. The investigation data proved the performed sanitation effective and confirmed microbiological usability of the sludge for a natural use. The total contents of heavy metals and their distribution between particular fractions were determined in the sludge mixtures with mineral waste and in reference samples (i.e. sludge and mineral waste). No significant changes of metals proportion bound with biogenie fractions (fractions I- II) after addition of the mineral wastes to sludge were observed. Cadmium, zinc and partially chrome are bound with the iron and manganese oxides fraction (fraction III) which is sensitive to the redox potential changes. No significant change of contents was observed with the increase in a contribution of sludge or mineral waste. In all samples of the organic fraction (fraction IV) chrome and copper are bound in the highest amounts, and in the residue fraction (fraction V) cadmium, nickel and lead are bound, mainly. The investigation has showed that addition of optional proportions of sludge and mineral wastes mixtures into soil did not result in increase in heavy metals hazard. The investigation of the metals speciation in sludge and their mixtures with the mineral wastes showed similar metals distribution in individual fractions. The most hazardous elements for soil, water and plants such as lead, chrome, nickel, cadmium and zinc are bound in slightly soluble fractions and thus are hardly available to the ecosystem.
Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Nanotechnology has been widely applied in agriculture, and understanding of the mechanisms of plant interaction with nanoparticles (NPs) as environmental contaminants is important. The aim of this study was to determine the effects of foliar application of cobalt oxide (Co3O4) NPs on some morpho-physiological and biochemical changes of canola (Brassica napus L.) leaves. Seeds were sown in plastic pots and grown under controlled conditions. Fourteen-day-old seedlings were sprayed with different concentrations of Co3O4 NPs (0, 50, 100, 250, 500, 1000, 2000, and 4000 mg L-1) at weekly intervals for 5 weeks. Growth parameters of the shoot (length, fresh and dry weights) were stimulated by low concentrations of Co3O4 NPs (50 and 100 mg L-1) and repressed by higher concentrations. Similar trends were observed in photosynthetic pigment contents. The results indicated that high concentrations of Co3O4 NPs increased lipoxygenase (LOX) activity and the malondialdehyde (MDA), hydrogen peroxide (H2O2), and dehydroascorbate (DHA) contents, but reduced the membrane stability index (MSI), ascorbate (ASC), and glutathione (GSH). Despite the increase of antioxidant capacity (DPPH) and the accumulation of nonenzymatic antioxidants (total flavonoids and flavonols) and osmolytes (proline, glycine betaine (GB) and soluble sugars) at high concentrations of Co3O4 NPs, the growth and photosynthesis were reduced. The defence system activity did not seem to be sufficient to detoxify reactive oxygen species (ROS). Altogether, high concentrations of Co3O4 NPs showed a phytotoxic potential for canola as an oilseed crop.

Go to article

Authors and Affiliations

Malihe Jahani
Ramazan Ali Khavari-Nejad
Homa Mahmoodzadeh
Sara Saadatmand
Download PDF Download RIS Download Bibtex

Abstract

The subject of this paper is to analyse the climate change and its influence on the energy performance of building and indoor temperatures. The research was made on the example of the city of Kielce, Poland. It was was carried out basing on the Municipal Adaptive Plan for the city of Kielce and climate data from the Ministry of Investment and Development.The predicted, future parameters of the climate were estimated using the tool Weather Shift for Representative Concentration Pathways (RCP). The analysis took into consideration the RCP4.5 and RCP8.5 scenarios for years 2035 and 2065, representing different greenhouse gas concentration trajectories. Scenario RCP4.5represents possible, additional radiative forcing of 4.5 W/m2 in 2100, and RCP8.5 an additional 8.5 W/m2. The calculated parameters included average month values of temperature and relative humidity of outdoor air, wind velocity and solar radiation. The results confirmed the increase of outdoor temperature in the following year. The values of relative humidity do not change significantly for the winter months, while in the summer months decrease is visible. No major changes were spotted in the level of solar radiation or wind speed. Based on the calculated parameters dynamic building modelling was carried out using the TRNSYS software. The methodology and results of the calculations will be presented in the second part of the paper.
Go to article

Bibliography


[1] D. Burghila, C.-E. Bordun, M. Doru, N. Sarbu, A. Badea, and S. M. Cimpeanu, “Climate Change Effects – Where to Next?,” Agric. Agric. Sci. Procedia, 2015, https://doi.org/10.1016/j.aaspro.2015.08.107
[2] H. Kawase et al., “Changes in extremely heavy and light snow-cover winters due to global warming over high mountainous areas in central Japan,” Prog. Earth Planet. Sci., 2020, https://doi.org/10.1186/s40645-020-0322-x
[3] Z. Zhou et al., “Is the cold region in Northeast China still getting warmer under climate change impact?,” Atmos. Res., 2020, https://doi.org/10.1016/j.atmosres.2020.104864
[4] J. Hansen, M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade, “Global temperature change,” Proc. Natl. Acad. Sci. U. S. A., 2006, https://doi.org/10.1073/pnas.0606291103
[5] Z. W. Kundzewicz et al., “Flood risk and climate change: global and regional perspectives,” Hydrol. Sci. J., 2014, https://doi.org/10.1080/02626667.2013.857411
[6] L. Gu et al., “Projected increases in magnitude and socioeconomic exposure of global droughts in 1.5 and 2 °C warmer climates,” Hydrol. Earth Syst. Sci., 2020, https://doi.org/10.5194/hess-24-451-2020
[7] M. Kocsis, A. Dunai, A. Makó, A. Farsang, and J. Mészáros, “Estimation of the drought sensitivity of Hungarian soils based on corn yield responses,” J. Maps, 2020, https://doi.org/10.1080/17445647.2019.1709576
[8] E. M. Blyth, A. Martínez-de la Torre, and E. L. Robinson, “Trends in evapotranspiration and its drivers in Great Britain: 1961 to 2015,” Prog. Phys. Geogr., 2019, https://doi.org/10.1177/0309133319841891
[9] V. Diaz, G. A. Corzo Perez, H. A. J. Van Lanen, D. Solomatine, and E. A. Varouchakis, “Characterisation of the dynamics of past droughts,” Sci. Total Environ., 2019, https://doi.org/10.1016/j.scitotenv.2019.134588
[10] J. Ma et al., “The Characteristics of Climate Change and Adaptability Assessment of Migratory Bird Habitats in Wolonghu Wetlands,” Wetlands, 2019, https://doi.org/10.1007/s13157-018-1068-8
[11] R. Bhambri et al., “The hazardous 2017–2019 surge and river damming by Shispare Glacier, Karakoram,” Sci. Rep., 2020, https://doi.org/10.1038/s41598-020-61277-8
[12] D. Parkes and B. Marzeion, “Twentieth-century contribution to sea-level rise from uncharted glaciers,” Nature. 2018, https://doi.org/10.1038/s41586-018-0687-9
[13] M. Zemp et al., “Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016,” Nature. 2019, https://doi.org/10.1038/s41586-019-1071-0
[14] A. F. S. Ribeiro, A. Russo, C. M. Gouveia, P. Páscoa, and C. A. L. Pires, “Probabilistic modelling of the dependence between rainfed crops and drought hazard,” Nat. Hazards Earth Syst. Sci. Discuss., 2019, https://doi.org/10.5194/nhess-2019-37
[15] T. Frederikse et al., “Antarctic Ice Sheet and emission scenario controls on 21st-century extreme sea-level changes,” Nat. Commun., 2020, https://doi.org/10.1038/s41467-019-14049-6
[16] A. Di Luca, R. de Elía, M. Bador, and D. Argüeso, “Contribution of mean climate to hot temperature extremes for present and future climates,” Weather Clim. Extrem., 2020, https://doi.org/10.1016/J.WACE.2020.100255
[17] T. F. Stocker et al., Climate change 2013 the physical science basis: Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change. 2013.
[18] S. Schaphoff, U. Heyder, S. Ostberg, D. Gerten, J. Heinke, and W. Lucht, “Contribution of permafrost soils to the global carbon budget,” Environ. Res. Lett., 2013, https://doi.org/10.1088/1748-9326/8/1/014026
[19] D. M. Lawrence, C. D. Koven, S. C. Swenson, W. J. Riley, and A. G. Slater, “Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions,” Environ. Res. Lett., 2015, https://doi.org/10.1088/1748-9326/10/9/094011
[20] S. T. Ngai et al., “Future projections of Malaysia daily precipitation characteristics using bias correction technique,” Atmos. Res., 2020, https://doi.org/10.1016/j.atmosres.2020.104926
[21] B. E. Berglund, “Human impact and climate changes - Synchronous events and a causal link?,” Quat. Int., 2003, https://doi.org/10.1016/s1040-6182(02)00144-1
[22] C. K. Folland et al., “Global temperature change and its uncertainties since 1861,” Geophys. Res. Lett., 2001, https://doi.org/10.1029/2001GL012877
[23] A. Goliger et al., “Comparative study between poland and south africa wind climates, the related damage and implications of adopting the eurocode for wind action on buildings,” Arch. Civ. Eng., 2013, https://doi.org/10.2478/ace-2013-0003
[24] T. Skoczkowski, S. Bielecki, A. Węglarz, M. Włodarczak, and P. Gutowski, “Impact assessment of climate policy on Poland’s power sector,” Mitig. Adapt. Strateg. Glob. Chang., 2018, https://doi.org/10.1007/s11027-018-9786-z
[25] A. Miszczuk, “Influence of air tightness of the building on its energy-efficiency in single-family buildings in Poland,” in MATEC Web of Conferences, 2017, vol. 117, https://doi.org/10.1051/matecconf/201711700120
[26] S. Firlag, “Wpływ rodzaju systemu ogrzewczego na komfort cieplny i zużycie energii w jednorodzinnych budynkach pasywnych,” Czas. Tech., vol. 107, no. 4, pp. 49–57, 2010.
[27] Sotiris Vardoulakis, Chrysanthi Dimitroulopoulou, John Thornes, Ka-Man Lai, Jonathon Taylor, Isabella Myers, Clare Heaviside, Anna Mavrogianni, Clive Shrubsole, Zaid Chalabi, Michael Davies, Paul Wilkinson, Impact of climate change on the domestic indoor environment and associated health risks in the UK, Environment International, Volume 85, 2015, Pages 299–313, ISSN 0160-4120, https://doi.org/10.1016/j.envint.2015.09.010
[28] Mancini F, Lo Basso G. How Climate Change Affects the Building Energy Consumptions Due to Cooling, Heating, and Electricity Demands of Italian Residential Sector. Energies. 2020; 13(2): p. 410. https://doi.org/10.3390/en13020410
[29] Stagrum, A.E.; Andenæs, E.; Kvande, T.; Lohne, J. Climate Change Adaptation Measures for Buildings – A Scoping Review. Sustainability 2020, 12, 1721. https://doi.org/10.3390/su12051721
[30] I. Szer, E. Błazik-Borowa, and J. Szer, “The Influence of Environmental Factors on Employee Comfort Based on an Example of Location Temperature,” Arch. Civ. Eng., 2017, https://doi.org/10.1515/ace-2017-0035
[31] Knera D, Heim D. Application of a BIPV to cover net energy use of the adjacent office room. Manag Environ Qual An Int J 2016;27:649–62. https://doi.org/10.1108/MEQ-05-2015-0104
[32] Wieprzkowicz A, Heim D. Energy performance of dynamic thermal insulation built in the experimental façade system. Manag Environ Qual 2016;27. https://doi.org/10.1108/MEQ-05-2015-0097
[33] Barecka MH, Zbicinski I, Heim D. Environmental, energy and economic aspects in a zero-emission façade system design. Manag Environ Qual An Int J 2016;27:708–21. https://doi.org/10.1108/MEQ-05-2015-0105
[34] Firląg S, Piasecki M. NZEB Renovation Definition in a Heating Dominated Climate: Case Study of Poland. Applied Sciences. 2018; 8(9):1605. https://doi.org/10.3390/app8091605
[35] M. Kuśmierz, A., Hajto, M., Kacprzyk, W., Lisowska-Mieszkowska, E., Pawlak, J., Rymwid-Mickiewicz, K., Śnieżek, T., Grzegorczyk, I., Gorczyński, C., Kacprzyk, K., Borzyszkowski, J., Kamiński, Plan Adaptacji do zmian klimatu Miasta Kielce do roku 2030. Kielce, Warszawa, 2018.
[36] S. C. Maberly et al., “Global lake thermal regions shift under climate change,” Nat. Commun., 2020, https://doi.org/10.1038/s41467-020-15108-z
[37] Ministry of Investment and Development, Typical meteorological years and statistical climate data for energy calculations of buildings. Warsaw, 2018
[38] A. D. McGuire et al., “Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change,” Proc. Natl. Acad. Sci. U. S. A., 2018, https://doi.org/10.1073/pnas.1719903115
[39] K. Riahi, A. Grübler, and N. Nakicenovic, “Scenarios of long-term socio-economic and environmental development under climate stabilization,” Technol. Forecast. Soc. Change, 2007, https://doi.org/10.1016/j.techfore.2006.05.026
[40] Intergovernmental Panel on Climate Change, Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. IPCC Expert Meeting Report on New Scenarios. Noordwijkerhout, 2008.
[41] J. Wibig, “Heat waves in Poland in the period 1951–2015: trends, patterns and driving factors”, Meteorol. Hydrol. Water Manag., 2017, https://doi.org/10.26491/mhwm/78420
[42] A. Krzyżewska and J. Dyer, “The August 2015 mega-heatwave in Poland in the context of past events”, Weather, 2018, https://doi.org/10.1002/wea.3244
[43] S. Russo, J. Sillmann, and E. M. Fischer, “Top ten European heatwaves since 1950 and their occurrence in the coming decades”, Environ. Res. Lett., 2015, https://doi.org/10.1088/1748-9326/10/12/124003
Go to article

Authors and Affiliations

Szymon Firląg
1
ORCID: ORCID
Artur Miszczuk
1
ORCID: ORCID
Bartosz Witkowski
2
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. Faculty of Civil Engineering, Wroclaw University of Science and Technology, Na Grobli 15, 50-421 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Comparison of T and S values in areas 1, 2, and 3 in the Bransfield Strait and Admiralty Bay (Fig. 1) shows that the warmest waters are found in area 1, while the coldest in area 3. Surface salinity is the lowest in area 2 as a result of water outflow from land. In area 3 vertical salinity variations are the lowest, with the maximum occurring at the surface. At 500 m depth the highest salinity is recorded in area 1. The most homogeneous distribution of temperature and salinity is observed in area 3. In Admiralty Bay, in the annual cycle of 1995 water temperatures at 4 m, 10 m and 100 m are similar to those in 1979 except in the winter, when they are lower.

Go to article

Authors and Affiliations

Stanisław Rakusa-Suszczewski

This page uses 'cookies'. Learn more