Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Luffa cylindrica M. Roem, is commonly called sponge gourd or Egyptian cucumber. In September 2018, several plants showing symptoms of powdery mildew were observed in some fields at different locations in Egypt. Identification and pathogenicity tests indicated that the causal fungus of powdery mildew disease of luffa cylindrica was Podosphaera xanthii. Results of surveyed luffa plants grown at different field localities of northern Egypt, for powdery mildew disease incidence revealed that the maximum record (57.33%) of disease occurrence was recorded in some fields belonging to Beheira governorate followed by, Alexandria and Sharqia (53.67% and 48.00%, respectively). Meanwhile, fewer occurrences were observed in Kafer El-Sheekh governorate (45.33%). We applied biocontrol agents as a foliar spray against powdery mildew in vitro and under field conditions. The effects of some essential oils, organic acid and bioproducts were also studied. All treatments significantly reduced P. xanthii compared to untreated plants. Chaetomium globosum and Saccharomyces cerevisiae alone or grown on rice straw and/or bagas showed highly reduced disease incidence compared to the other treatment. From the present study it could be suggested that the usage of biocontrol formulated on rice straw might be used as an easily applied, safe and cost effective control method against powdery mildew diseases.

Go to article

Authors and Affiliations

Nadia Gamil Elgamal
Mohamed Saeed Khalil
Download PDF Download RIS Download Bibtex

Abstract

There has been considerable research done on multi-chamber mufflers used in the elimination of industrial venting noise. However, most research has been restricted to lower frequencies using the plane wave theory. This has led to underestimating acoustical performances at higher frequencies. Additionally, because of the space-constrained problem in most plants, the need for optimization of a compact muffler seems obvious. Therefore, a muffler composed of multiple rectangular fin-shaped chambers is proposed. Based on the eigenfunction theory, a four-pole matrix used to evaluate the acoustic performance of mufflers will be deduced. A numerical case for eliminating pure tones using a three-fin-chamber muffler will also be examined. To delineate the best acoustical performance of a space-constrained muffler, a numerical assessment using the Differential Evolution (DE) method is adopted. Before the DE operation for pure tone elimination can be carried out, the accuracy of the mathematical model must be checked using experimental data. The results reveal that the broadband noise has been efficiently reduced using the three-fin-chamber muffler. Consequently, a successful approach in eliminating a pure tone using optimally shaped three-fin-chamber mufflers and a differential evolution method within a constrained space has been demonstrated.
Go to article

Authors and Affiliations

Min-Chie Chiu
Ying-Chun Chang
Ho-Chih Cheng
Wei-Ting Tai
Download PDF Download RIS Download Bibtex

Abstract

Phantom sources are known to be perceived similar to real sound sources but with some differences. One of the differences is an increase of the perceived source width. This article discusses the perception, measurement, and modeling of source width for frontal phantom sources with different symmetrical arrangements of up to three active loudspeakers. The perceived source width is evaluated on the basis of a listening test. The test results are compared to technical measures that are applied in room acoustics: the inter-aural cross correlation coefficient (IACC) and the lateral energy fraction (LF). Adaptation of the latter measure makes it possible to predict the results by considering simultaneous sound incidence. Finally, a simple model is presented for the prediction of the perceived source width that does not require acoustic measurements as it is solely based on the loudspeaker directions and gains.
Go to article

Authors and Affiliations

Matthias Frank
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an analysis of the blending characteristics of axial flow high-speed impellers under a turbulent regime of flow of an agitated low viscosity liquid. The conductivity method is used to determine the time course of blending (homogenisation) of miscible liquids in a pilot plant fully baffled mixing vessel, and a torquemeter is used for measuring the impeller power input in the same system. Four-blade and six-blade pitched blade impellers and three high efficiency axial flow impellers are tested for the given degree of homogeneity (98%).

The experimental results and also the results of the authors' previous study, in accordance with the theoretical approach described in the literature, show that there is a universal relationship between the impeller power number and the dimensionless blending time, taking into consideration the impeller-to-vessel diameter ratio, independent of the geometry of the axial flow impeller but dependent on the degree of homogeneity. This relationship is found to be valid on a pilot plant scale under a turbulent flow regime of an agitated liquid.

Go to article

Authors and Affiliations

Ivan Fořt
Tomáš Jirout

This page uses 'cookies'. Learn more