Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the problem of aliasing and folding effects in spectrum of sampled signals in view of Information Theory is discussed. To this end, the information content of deterministic continuous time signals, which are continuous functions, is formulated first. Then, this notion is extended to the sampled versions of these signals. In connection with it, new signal objects that are partly functions but partly not are introduced. It is shown that they allow to interpret correctly what the Whittaker– Shannon reconstruction formula in fact does. With help of this tool, the spectrum of the sampled signal is correctly calculated. The result achieved demonstrates that no aliasing and folding effects occur in the latter. Finally, it is shown that a Banach–Tarski-like paradox can be observed on the occasion of signal sampling.
Go to article

Authors and Affiliations

Andrzej Borys
1
ORCID: ORCID

  1. Department of Marine Telecommunications, Faculty of Electrical Engineering, Gdynia Maritime University, Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article is an attempt to reflect upon the way in which some terms coming from modern anthropology (local knowledge, thick description) can be used in studies regarding proper names in the cultural and social perspective. This anthropological way of thinking has been presented in Artur Rejter’s new book “Proper Names in (Con)texts of Culture”. The author of the article shows that studying culture through proper names must entail the widening of the variety of scientific methods and strategies and adding those used in social studies and humanities.

Go to article

Authors and Affiliations

Katarzyna Skowronek
Download PDF Download RIS Download Bibtex

Abstract

The active noise-reducing casing developed and promoted by the authors in recent publications have multiple advantages over other active noise control methods. When compared to classical solutions, it allows for obtaining global reduction of noise generated by a device enclosed in the casing. Moreover, the system does not require loudspeakers, and much smaller actuators attached to the casing walls are used instead. In turn, when compared to passive casings, the walls can be made thinner, lighter and with much better thermal transfer than sound-absorbing materials. For active noise control a feedforward structure is usually used. However, it requires an in-advance reference signal, which can be difficult to be acquired for some applications. Fortunately, usually the dominant noise components are due to rotational operations of the enclosed device parts, and thus they are tonal and multitonal. Therefore, it can be adequately predicted and the Internal Model Control structure can be used to benefit from algorithms well developed for feedforward systems. The authors have already tested that approach for a rigid casing, where interaction of the walls was significantly reduced. In this paper the idea is further explored and applied for a light-weight casing, more frequently met in practice, where each vibrating wall of the casing influences all the other walls. The system is verified in laboratory experiments.
Go to article

Authors and Affiliations

Krzysztof Mazur
Marek Pawełczyk
Download PDF Download RIS Download Bibtex

Abstract

A high accurate electronic instrument transformer calibration system is introduced in this paper. The system uses the fourth-order convolution window algorithm for the error calculation method. Compared with Fast Fourier Transform, which is recommended by standard IEC-60044-8 (Electronic current transformers), it has higher accuracy. The relative measuring errors caused by asynchronous sampling could be reduced effectively without any special hardware technique adopted. The results show that the ratio error caused by asynchronous sampling can be reduced to 10-4, and the phase error can be reduced to 10-3 degrees when the deviation of frequency is within ±0.5 Hz. The present method of measurement processing is achieved by a high-accuracy USB multifunction data acquisition (DAQ) card and virtual measurement devices, with low cost, short exploitation period and high stability.

Go to article

Authors and Affiliations

Yue Tong
Guoxiong Ye
Keqin Guo
Hongbin Li

This page uses 'cookies'. Learn more