Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This perspective paper focuses on the changes in teaching chemical engineering in Europe triggered by new challenges and megatrends observed in the chemical and related industries. Among the new teaching areas to address those challenges and megatrends, process intensification, digitalization and advanced materials are expected to play the most important role and are discussed in more detail. The discussion on incorporation of those new areas in the university curricula is illustrated with a comparison of educational approaches to the chemical engineering teaching at two universities – Delft University of Technology and Warsaw University of Technology. The aim of this paper is to focus the attention of university teachers and potential decision makers on the most important challenges for contemporary teaching of chemical engineering.
Go to article

Authors and Affiliations

Andrzej I. Stankiewicz
1
Marek Henczka
2
Eugeniusz Molga
2
ORCID: ORCID

  1. Delft University of Technology, Process and Energy Department, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
  2. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Warynskiego 1, 00-645 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Synthetic polymer latexes, such as styrene–butadiene rubber (SBR) latex addition in Portland cement has gained wider acceptance in many applications in the construction industry. Polymer-modified cementitious systems seals the pores and micro cracks developed during hardening of the cement matrix, by dispersing a film of polymer phase throughout the concrete. A comprehensive set of experimental test were conducted for studying the compressive properties of SBR latex polymer with crimped polypropylene fibres at relative volume fractions of 0.1 and 0.3%. The results indicated that the addition of polypropylene fibre has little effect on the reduction in the workability of concrete composite containing fly ash and SBR Latex. Increase in polypropylene fibres upto 0.3% Vf showed increase in compressive strength upto 57.5 MPa. The SBR concrete without fibre showed an increase in strength upto 20% compared to plain concrete. Test results also indicated that the compressive strength was increased in SBR fibre concrete by means of an ordinary dry curing process than wet curing because of their excellent water retention due to polymer film formation around the cement grains. On the contrary the compressive strength reduces for SBR fibre concretes under wet curing compared to dry curing.

Go to article

Authors and Affiliations

S. Thirumurugan
A. Sivakumar

This page uses 'cookies'. Learn more