Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Heating, ventilation, air conditioning (HVAC) is one of crucial system in a vehicle. Unfortunately, its performance can be affected by the vibration of HVAC components, which subsequently produced unwanted noises. This paper presents an innovative design solution which called as tuneable dynamic vibration absorber (TDVA) to reduce the humming-type noise and vibration in the HVAC system. A detail investigation is carried by developing a lab-scale HVAC model that has the capability to imitate the real HVAC operation in a vehicle. An alternated air-condition (AC) with a fixed blower speed is implied in the study. The analysis of hummingtype noise and vibration induced from the HVAC components are performed, and the TDVA is designed and tuned according to the natural frequency of the AC pipe before the attachment. The humming-type noise and vibration characteristics of the HVAC components are compared before and after the implementation of the TDVA. The findings shown that the HVAC model data compares well with the vehicle data, whereby the implementation of TDVA is found to reduce the vibration of the AC pipe by 79% and 61% in both idle and operating conditions and this subsequently improved the humming-type noise of the HVAC system. It also been observed that the TDVA has an effective frequency range around 75–255 Hz and 100–500 Hz for the HVAC model and vehicle systems, respectively.
Go to article

Authors and Affiliations

Muhammad Safwan Abdul Aziz
1
Ahmad Zhafran Ahmad Mazlan
1
Mohd Hafiz Abdul Satar
1
Muhammad Abdul Rahman Paiman
2
Mohd Zukhairi Abd Ghapar
2

  1. The VibrationLab, School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, Penang, Malaysia
  2. Testing and Development, Vehicle Development and Engineering, Proton Holdings Berhad, Shah Alam, Selangor, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of experimental drum granulation of silica flour with the use of wetting liquids with different values of surface tension. Additionally, different liquid jet breakup and different residual moisture of the bed were applied in the tests. The process was conducted periodically in two stages: wetting and proper granulation, during which no liquid was supplied to the bed. The condition of the granulated material after the period of wetting (particle size distribution and moisture of separate fractions) and a change in the particle size distribution during the further conduct of the process (granulation kinetics) were determined.

Go to article

Authors and Affiliations

Michał Błaszczyk
Andrzej Heim
Tomasz P. Olejnik

This page uses 'cookies'. Learn more