Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Vibration analysis for conditional preventive maintenance is an essential tool for the industry. The vibration signals sensored, collected and analyzed can provide information about the state of an induction motor. Appropriate processing of these vibratory signals leads to define a normal or abnormal state of the whole rotating machinery, or in particular, one of its components. The main objective of this paper is to propose a method for automatic monitoring of bearing components condition of an induction motor. The proposed method is based on two approaches with one based on signal processing using the Hilbert spectral envelope and the other approach uses machine learning based on random forests. The Hilbert spectral envelope allows the extraction of frequency characteristics that are considered as new features entering the classifier. The frequencies chosen as features are determined from a proportional variation of their amplitudes with the variation of the load torque and the fault diameter. Furthermore, a random forest-based classifier can validate the effectiveness of extracted frequency characteristics as novel features to deal with bearing fault detection while automatically locating the faulty component with a classification rate of 99.94%. The results obtained with the proposed method have been validated experimentally using a test rig.
Go to article

Authors and Affiliations

Bilal Djamal Eddine Cherif
1
Sara Seninete
2
Mabrouk Defdaf
1

  1. Department of Electrical Engineering, Faculty of Technology, University of M’sila, M’sila 28000, Algeria
  2. Department of Electrical Engineering, Faculty of Technology, University of Mostaganem, Mostaganem 27000, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The Parliament of the Republic of Poland was one of five European parliaments which – in view of the full-scale aggression by Russia against Ukraine which commenced on 24 February 2022 – adopted resolutions declaring the Russian Federation as a state associated with terrorism. The Polish acts are consistent with resolutions adopted on the same subject by the Parliamentary Assembly of the Council of Europe (PACE) and the European Parliament of the European Union (EP).
Although not legally binding, the adoption of these resolutions have a large symbolic dimension and may have a negative impact on the perception of and possibilities of Russian participation in the international arena. From the Polish perspective, the national decisions linking Russia with terrorist activities will influence decisions taken within the sanctions regime, as well as with regard to the legal qualification of certain acts under Polish criminal law in the course of proceedings conducted by Polish prosecution authorities in relation to the war. Finally, as long as the war continues and the assessment of Russia as a terrorist state remains in place, it will not be possible to restore and maintain ordinary diplomatic, economic and other relations with that state.
Go to article

Authors and Affiliations

Aleksandra Mężykowska
1
ORCID: ORCID

  1. Department of Constitutional Law and European Research, Institute ofLegal Sciences, Polish Academy of Sciences
Download PDF Download RIS Download Bibtex

Abstract

The detection of transformer winding deformation caused by short-circuit current is of great significance to the realization of condition based maintenance. Considering the influence of environment and measurement errors, an online deformation detection method is proposed based on the analysis of leakage inductance changes. First, the operation expressions are derived on the basis of the equivalent circuit and the leakage inductance parameters are identified by the partial least squares regression algorithm. Second, the amount of the leakage inductance samples in a detection time window is determined using the Monte Carlo simulation thought, and then the samples in the confidence interval are obtained. Last, a criteria is built by the mean value changes of the leakage inductance samples and the winding deformation is detected. The online detection method considers the random fluctuation characteristics of the leakage inductance samples, adjust the threshold value automatically, and can quantify the change range to assess the severity. Based on the field data, the distribution of the leakage inductance samples is analyzed to obey the normal function approximately. Three deformation experiments are done by different sub-winding connections and the detection results verify the effectiveness of the proposed method.

Go to article

Authors and Affiliations

Li Jiansheng
Tao Fengbo
Wei Chao
Lu Yuncai
Wu Peng
Zhu Mengzhou
Yu Miao
Download PDF Download RIS Download Bibtex

Abstract

The article presents an approach to assessing human physical models specified in the ISO 10068:2012 standard. The models were compared on the basis of energy analysis, which was conducted in terms of power distribution. Since the models in question have a fully specified internal structure, the investigation focused on power distribution in the models and the total power in the system. The article provides a description of the construction and energy-based modelling of Human-Tool systems. Simulation results obtained during the study were analysed in terms of health risks posed to the tool operator.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Marian W. Dobry
Tomasz Hermann

Download PDF Download RIS Download Bibtex

Abstract

An analysis of sustainable development goals made it possible to distinguish three key aspects of shaping pedestrian-friendly streets: the functional, social, and environmental ones. Focusing on these selected aspects, the main threats to this group of users in the Polish streets were presented. Based on the analysis of the standards and good practices in street design from the recent years for selected Polish cites, the main directions of activities and solutions aimed at eliminating threats making up the contemporary trends in shaping urban streets were identified.
Go to article

Bibliography

Ahmed, N., Elshater, A., Afifi, S. (2019), ‘The Community Participation in the Design Process of Livable Streets’ [in:] Bassioni G. i in. (eds.) Innovations and Interdisciplinary Solutions for Underserved Areas. InterSol, 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 296, Cham: Springer, https://doi.org/10.1007/978-3-030-34863-2_13.
Appleyard, B., Cox, L. ‘At home in the Zone. Creating livable streets in the U.S.’, Planning, 72(9)2006, pp. 30–35.
Appleyard, D., Gerson, M.S., Lintel, M. (1981), Livable streets, Berkeley: University of California Press.
Bell, S. (2004), Elements of Visual Design in the Landscape, London & New York: Spon Press.
Bierwiaczonek, K. (2016), Społeczne znaczenie miejskich przestrzeni publicznych, Katowice: Wydawnictwo Uniwersytetu Śląskiego.
Brzeziński, A. (2015) ‘Czym może być zrównoważony transport miejski’ [w:] Kalinowska, A. (red.) Miasto idealne — miasto zrównoważone. Planowanie przestrzenne terenów zurbanizowanych i jego wpływ na ograniczenie skutków zmian klimatu, Warszawa: Uniwersytet Warszawski, pp. 53–60.
Brzeziński, A. (red.) (2013), Poradnik. Organizacja przestrzeni ulic w obszarach śródmiejskich, Warszawa: TransEko.
Cichy-Pazder, E., Markowski, T. (2009), ‘Karta Przestrzeni Publicznej’, Materiały III Kongresu Urbanistyki Polskiej, Nowa Urbanistyka — nowa jakość życia, Urbanista, 15, pp. 14–18.
City Resilience Profiling Tool (2018) UN Habitat, [online] http://urbanresiliencehub.org/wp-content/uploads/2018/10/CRPT-Guide-Pages-Online.pdf, (accessed: 11.03.2021).
Colville-Andersen, M. (2019), Być jak Kopenhaga. Duński przepis na miasto szczęśliwe, Kraków: Wydawnictwo Wysoki Zamek.
Engwicht, D. (1999), Street reclaiming: creating livable streets and vibrant communities, Gabriola Island: New Society Publishers.
Fonseca, F. et al. (2019), ‘Smart Pedestrian Network: An Integrated Conceptual Model for Improving Walkability’ [in:] Pereira P. et al. (eds.) Society with Future: Smart and Liveable Cities, SC4Life 2019, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 318. Cham: Springer, https://doi.org/10.1007/978-3-030-45293-3_10.
Forsyth, A., Southworth, M. ‘Cities afoot: pedestrians, walkability and urban design’, Journal of Urban Design, 13(1)2008, pp. 1–3, https://doi.org/10.1080/13574800701816896.
Gdański Standard Ulicy Miejskiej (GSUM) (2020), Biuro Rozwoju Gdańska, [online] https://baw.bip.gdansk.pl/api/file/GetZipxAttachment/216/1188098/preview (accessed: 26.04.2021).
Gdańsk Programy Operacyjne 2023 (2015), Uchwała nr XVII/514/15 Rady Miasta Gdańska z dnia 17 grudnia 2015 roku.
Gehl, J. et al. (2006), New City Life, Kopenhagen: The Danish Architectural Press.
Gehl, J. (2017), Miasta dla ludzi, Kraków: Wydawnictwo RAM.
Global Street Design Guide (2016), Global Designing Cities, https://globaldesigningcities.org/publication/global-street-design-guide/, (accessed: 26.04.2021).
Gunawardena, K.R., Wells, M.J. i Kershaw, T. ‘Utilising green and bluespace to mitigate urban heat island intensity’, Science of The Total Environment, 584-585, 2017, pp. 1040–1055, https://doi.org/10.1016/j.scitotenv.2017.01.158.
Ignatieva, M., Stewart, G.H., Meurk, C. ‘Planning and design of ecological networks in urban areas’, Landscape and Ecological Engineering, 7, 2011, pp. 17–25, https://doi.org/10.1007/s11355-010-0143-y.
Im, J. ‘Green Streets to Serve Urban Sustainability: Benefits and Typology’, Sustainability, 11(22)2019, pp. 64–83, https://doi.org/10.3390/su11226483.
Jacobs, J. (1961), The Death and Life of Great American Cities, New York: The Modern Library.
Jasiński, A. ‘Wielkomiejski dylemat — przestrzeń publiczna czy przestrzeń bezpieczna’, Przestrzeń i Forma, 12, 2009, pp. 320–350.
Kabisch, N. et al. (eds.) (2017), Nature-Based Solutions to Climate Change Adaptation in Urban Areas, Cham: Springer International Publishing AG.
Karlikowska, J. i Kimic, K. ‘Idea uspokojenia ruchu ulic miejskich w XX i XXI wieku — przemiany w zakresie priorytetów społecznych i przyrodniczych’, Kwartalnik Architektury i Urbanistyki, 3, 2017, s. 87–113.
Kim, Y.J., Lee, C., Kim, J.H. ‘Sidewalk Landscape Structure and Thermal Conditions for Child and Adult Pedestrians’, International journal of environmental research and public health, 15(1)2018, 148, https://doi.org/10.3390/ijerph15010148.
Kimic, K. ‘Wspomaganie projektowania uniwersalnego przestrzeni publicznych przez zastosowanie technologii informacyjno-komunikacyjnych (ICT) w meblach miejskich’, Studia Komitetu Przestrzennego Zagospodarowania Kraju PAN, CLXXVI, 176, 2017, Warszawa: KPZK PAN, s. 175–196, https://doi.org/10.24425/118573
Kimic, K., Maksymiuk, G. i Suchocka, M. ‘The application of new technologies in promoting a healthy lifestyle: selected examples’, Bulletin of Geography. Socio-economic Series, 43, 2019, pp. 121–130, https://doi.org/10.2478/bog-2019-0008.
Kingsbury, K.T., Lowry, M.B. i Dixon, M.P., ‘What Makes a “Complete Street” Complete?: A Robust Definition, Given Context and Public Input’, Journal of the Transportation Research Board, 2245(1)2011, pp. 103–110, https://doi.org/10.3141/2245-13.
Lis, A. (2011), Struktura przestrzenna i społeczna terenów rekreacyjnych w osiedlach mieszkaniowych Wrocławia z lat 70.-80. ubiegłego stulecia, Wrocław: Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu.
Lorens, P. (2007), Tematyzacja przestrzeni publicznej miasta, Gdańsk: Wydawnictwo Politechniki Gdańskiej.
Lusher, L. i Seaman, M. (2008), Streets to live by: How liveable street design can bring economic, health and quality-of-life benefits to New York City, e-book library. http://www.transalt.org/files/newsroom/reports/streets_to_live_by.pdf, (accessed: 14.03.2021).
Lusk, A.C., Ferreira da Silva Filho, D. i Dobbert, L. ‘Pedestrian and cyclist preferences for tree locations by sidewalks and cycle tracks and associated benefits: Worldwide implications from a study in Boston, MA’, Cities, 106, 102111, https://doi.org/10.1016/j.cities.2018.06.024.
Lynch, K. (2011), Obraz miasta, Kraków: Archiwolta.
Manderscheid, K. (2009), ‘Unequal Mobilities’ [in:] Ohnmacht T., Maksim H., Bergman M.M. (eds.) Mobilities and Inequality, London & New York: Routledge.
Mehta, V. (2013), The Street: A Quintessential Social Public Space, New York: Routledge.
Narodowy Program Bezpieczeństwa Ruchu Drogowego 2013–2020 (2013), Warszawa: Krajowa Rada Bezpieczeństwa Ruchu Drogowego.
Nawrath, M., Kowarik, I. i Fischer, L.K. ‘The influence of green streets on cycling behavior in European cities’, Landscape and Urban Planning, 190, 2019, 103598, https://doi.org/10.1016/j.landurbplan.2019.103598.
Nelicki, A., Zachariasz, I. ‘Skuteczność planowania przestrzennego na poziomie lokalnym a partycypacja społeczna’, Zarządzanie Publiczne, 2(4)2008, ss. 97–108.
Olszewski, P. et al. ‘Problems with assessing safety of vulnerable road users based on traffic accident data’, Archives of Civil Engineering, LXII(4/2)2016, pp. 149–168, https://doi.org/10.1515/ace-2015-0113.
Peñalosa, E. (2013), Why buses represent democracy in action, TED Conferences LLC, New York.
Plan adaptacji miasta Gdańska do zmian klimatu do roku 2030 (2019), Uchwała nr XIII/249/19 Rady Miasta Gdańska z dnia 29 sierpnia 2019 roku.
Plan Zrównoważonej Mobilności Miejskiej dla Gdańska 2030 (2018), Załącznik do uchwały Nr LV/1615/18 Rady Miasta Gdańska z dnia 28 czerwca 2018 roku.
Reclaiming city streets for people. Chaos or quality of life? (2004), European Commission, [online]. https://ec.europa.eu/environment/pubs/pdf/streets_people.pdf (accessed: 26.04.2021).
Rizwan, A.M., Dennis, L.Y.C., Liu, C. ‘A review on the generation, determination and mitigation of Urban Heat Island’, Journal of Environmental Sciences, 20(1)2008, pp. 120–128.
Safer roads for all. The EU good practice guide (2017), European Commission, [online] https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/safer_roads4all.pdf (accessed: 26.04.2021).
Sarmiento, O.L. et al. ‘Reclaiming the streets for people: Insights from Ciclovías Recreativas in Latin America’, Preventive Medicine, 103(S)2017, pp. 34–40.
Sattlegger, L., Rau, H. ‘Carlessness in a car‐centric world: A reconstructive approach to qualitative mobility biographies research’, Journal of Transport Geography, 53(5)2016, pp. 22–31.
Säumel, I., Weber, F., Kowarik, I. ‘Toward livable and healthy urban streets: Roadside vegetation provides ecosystem services where people live and move’, Environmental Science & Policy, 62, pp. 24–33, https://doi.org/10.1016/j.envsci.2015.11.012.
Standardy planowania i projektowania ulic z uwzględnieniem zielono-niebieskiej infrastruktury (2020), Zarządzenie nr 2785/20 Prezydenta Wrocławia z dnia 20 marca 2020 roku w sprawie Standardów planowania i projektowania ulic z uwzględnieniem zielono-niebieskiej infrastruktury.
Strategia Rozwoju Miasta Gdańska 2030 Plus (2014), Uchwała nr LVII/1327/14 Rady Miasta Gdańska z dnia 25 września 2014 roku.
Strategia Rozwoju Systemu Transportu Pieszego (2011), Urząd m.st. Warszawy, Warszawa: TransEko.
Strategia Rozwoju #Warszawa2030 (2018), Uchwała Rady m.st. Warszawy nr LXVI/1800/2018 z 10 maja 2018 roku.
Strategia Wrocław 2030 (2018), Uchwała Nr LI/1193/18 z dnia 15 lutego 2018 roku w sprawie strategii rozwoju Wrocławia pod nazwą „Strategia Wrocław 2030”.
Strategia zrównoważonego rozwoju systemu transportowego Warszawy do 2015 roku i na lata kolejne (2009), Uchwała Rady m.st. Warszawy Nr LVIII/1749/2009 z 9 lipca 2009 roku.
Studium uwarunkowań i kierunków zagospodarowania przestrzennego miasta Gdańska (2018), Biuro Rozwoju Gdańska, Uchwała nr LI/1506/18 Rady Miasta Gdańska dnia 23 kwietnia 2018 roku.
Studium uwarunkowań i kierunków zagospodarowania przestrzennego m.st. Warszawy (2006), Uchwała Rady m.st. Warszawy nr LXXXII/2746/2006 z dnia 10 października 2006 roku (z późn. zm.).
Suchocka, M. et al. ‘Designing hotspots in the public spaces and public greenery of modern cities — selected issues’, Ecological Questions, 30(4)2019, pp. 83–91, http://dx.doi.org/10.12775/EQ.2019.030.
Suchocka, M., Siedlecka, M. ‘Powierzchniowe systemy infiltracyjne z możliwością retencji wody jako metoda odwadniania nawierzchni dróg i ulic’, Drogownictwo, 4, 2017, ss. 128–136.
Symon, E. (2020), Wypadki Drogowe w Polsce 2019, Warszawa: Instytut Transportu Samochodowego.
Szatan, M. ‘Zanikanie przestrzeni publicznej we współczesnych miastach’, Palimpsest — Czasopismo Socjologiczne, 2, 2012, s. 91–100.
Szczepanowska, H.B. ‘Drzewa w mieście — zielony kapitał wartości i usług ekosystemowych’, Człowiek i Środowisko, 39(2) 2015, s. 5–28.
Szopińska, E., Zygmunt-Rubaszek, J. (2010), Propozycja standardów w zakresie kształtowania zieleni wysokiej miejskich tras komunikacyjnych, Wrocław: Zarząd Zieleni Miejskiej we Wrocławiu.
Szulczewska, B. (2018), Zielona infrastruktura: czy koniec historii?, Studia KPZK, 189, Warszawa: PAN, Komitet Przestrzennego Zagospodarowania Kraju.
Tyburek, J. (2017), ‘Urban resilience, czyli zarządzanie kryzysami i zapewnianie odporności miejskiej 2.0’ [w:] Czapska J., Mączyński P., Struzińska K. (ed.) Bezpieczne miasto. W poszukiwaniu wiedzy przydatnej praktykom, Kraków: Wydawnictwo JAK, s. 168–191.
von Schönfeld, K.C, Bertolini, L. ‘Urban streets: Epitomes of planning challenges and opportunities at the interface of public space and mobility’, Cities, 68, 2017, pp. 48–55, https://doi.org/10.1016/j.cities.2017.04.012.
Wejchert, K. (1984), Elementy kompozycji urbanistycznej, Warszawa: Wydawnictwo Arkady.
Wieteska-Rosiak, B. ‘Hybrydyzacja przestrzeni publicznej miasta w kontekście adaptacji do zmian klimatu’, Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach, 365, 2018, s. 30–44.
Wiszniowski, J. (2019), Kształtowanie ulicy jako przestrzeni publicznej, Wrocław: Oficyna Wydawnictwa Politechniki Wrocławskiej.
Wrocławska Polityka Mobilności (2013), Załącznik do Uchwały nr XLVIII/1169/13 Rady Miejskiej Wrocławia z dnia 19 września 2013 roku.
Wrocławskie standardy kształtowania przestrzeni miejskich przyjaznych pieszym (2017), Wrocław: Gmina Wrocław.
Zarządzenie nr 1217/19 Prezydenta Wrocławia z dnia 28 czerwca 2019 roku w sprawie ochrony drzew i rozwoju terenów zieleni Wrocławia.
Zarządzenie nr 1682/2017 Prezydenta Miasta Stołecznego Warszawy z dnia 23 października 2017 roku w sprawie tworzenia na terenie miasta stołecznego Warszawy dostępnej przestrzeni, w tym infrastruktury dla pieszych ze szczególnym uwzględnieniem osób o ograniczonej mobilności i percepcji.
Żmudzka, E. (2012) ‘Zmiany częstości występowania chmur opadowych w Polsce (1966–2000)’ [w:] Magnuszewski, A. (red.) Hydrologia w ochronie i kształtowaniu środowiska, Monografie Komitetu Inżynierii Środowiska PAN, Warszawa: Komitet Inżynierii Środowiska PAN, 69, 2012, s. 71–81.
Go to article

Authors and Affiliations

Michelle Mbazuigwe
ORCID: ORCID
Kinga Kimic
1
ORCID: ORCID

  1. Warsaw University of Life Sciences — SGGW, Institute of Environmental Engineering, Department of Landscape Architecture

This page uses 'cookies'. Learn more