Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An essential task of the interconnected power system is about how to optimize power plants during operation time which is known as economic dispatch. In this study, the Fruit Fly Optimization method is proposed to solve problems of dynamic economic dispatch in an electrical power system. To measure the performance of the method, a simulation was conducted for two different electric systems of the existing Sulselbar 150 kV thermal power plant system in Indonesia with two objective functions, namely fuel costs and active power transmission losses, aswell as the 30-bus IEEE standard system with five objective functions namely fuel costs, transmission losses (active and reactive power), a reactive power reserve margin, and an emission index by considering a power generation limit and ramp rates as the constraints. Under tested cases, the simulation results have shown that the Fruit Fly Optimization method can solve the problems of dynamic economic dispatch better than other existing optimization methods. It is indicated by all values of the objective functions that are lowest for the Fruit Fly Optimization method. Moreover, the obtained computational time is sufficiently fast to get the best solution.
Go to article

Bibliography

[1] Mei J., Zhao J., An Enhanced Quantum-Behaved Particle SwarmOptimization for Security Constrained Economic Dispatch, Proc. Int. Symp. Distrib. Comput. Appl. Bus. Eng. Sci., no. 1, pp. 221–224 (2018).
[2] Ieng S., Akil Y.S., Gunadin I.C., Hydrothermal Economic Dispatch Using Hybrid Big Bang-Big Crunch (HBB-BC) Algorithm, Journal of Phys. Conf. Ser., vol. 1198, no. 5, pp. 7–13 (2019).
[3] Jiang X., Zhou J.,Wang H., Zhang Y., Dynamic Environmental Economic Dispatch Using Multiobjective Differential Evolution Algorithm with Expanded Double Selection and Adaptive Random Restart, Electr. Power Energy Syst., vol. 49, no. 1, pp. 399–407 (2013).
[4] Saravanan R., Subramanian S., Dharmalingam V., Ganesan S., Economic Dispatch with Integrated Wind-Thermal Using Particle Swarm Optimization, Int. Journal of Adv. Res. Innov., vol. 5, no. 1, pp. 100–103 (2017).
[5] Tyagi N., Dubey H.M., Pandit M., Economic Load Dispatch of Wind-Solar-Thermal System Using Backtracking Search Algorithm, Int. Journal of Eng. Sci. Technol., vol. 8, no. 4, pp. 16–217 (2016).
[6] Zakaria Z., Rahman T.K.A., Hassan E.E., Economic Load Dispatch via an Improved Bacterial Foraging Optimization, Int. Power Eng. Optim. Conf., pp. 380–385 (2014).
[7] Farook S., Manjusha M., Optimization of Multi-Objective Dynamic Economic Dispatch Problem Using Knee Point Driven Evolutionary Algorithm, Int. Electr. Eng. Journal, vol. 7, no. 10, pp. 2396–2402 (2017).
[8] Gamayanti N., Alkaff A., Karim A., Optimization of Dynamic Economic Dispatch Using Artificial Bee Colony Algorithms, Java J. Electr. Electron. Eng., vol. 13, no. 1, pp. 23–28 (2015).
[9] Nema P., Gajbhiye S., Application of Artificial Intelligence Technique to Economic Load Dispatch of Thermal Power Generation Unit, Int. Journal of Energy Power Eng., vol. 3, no. 5, pp. 15–20 (2014).
[10] Elsakaan A.A., El-sehiemy R.A., Kaddah S.S., Elsaid M.I., An Enhanced Moth-Flame Optimizer for Solving Nonsmooth Economic Dispatch Problems with Emissions, Energy, pp. 1–24 (2018).
[11] Singh H.P., BrarY.S.,Kothari D.P., Reactive Power Based Fair Calculation Approach for Multiobjective Load Dispatch Problem, Arch. Electr. Eng., vol. 68, no. 4, pp. 719–735 (2019).
[12] Nwulu N., Emission Constrained Bid Based Dynamic Economic Dispatch Using Quadratic Programming, Int. Conf. Energy, Commun. Data Anal. Soft Comput. ICECDS, pp. 213–216 (2018).
[13] Sadoudi S., Boudour M., Kouba N.E.Y., Gravitational Search Algorithm for Solving Equal Combined Dynamic Economic-Emission Dispatch Problems in Presence of Renewable Energy Sources, Proc. Int. Conf. Appl. Smart Syst. ICASS, no. November, pp. 1–5 (2019).
[14] Chen G., Li C., Dong Z., Parallel and Distributed Computation for Dynamical Economic Dispatch, IEEE Trans. Smart Grid, vol. 8, no. 2, pp. 1026–1027 (2017).
[15] Kaushal R.K., Thakur T., Multiobjective Electrical Power Dispatch of Thermal Units with Convex and Non-Convex Fuel Cost Functions for 24 Hours Load Demands, Int. Journal of Eng. Adv. Technol., vol. 9, no. 3, pp. 1534–1542 (2020).
[16] Zheng X., Wang L., Wang S., An Enhanced Non-Dominated Sorting Based Fruit Fly Optimization Algorithm for Solving Environmental Economic Dispatch Problem, Proceeding Congr. Evol. Comput., pp. 626–633 (2014).
[17] Liang J., Zhang H., Wang K., Jia R., Economic Dispatch of Power System Based on Improved Fruit Fly Optimization Algorithm, Proceeding Int. Conf. Ind. Electron. Appl., pp. 1360–1366 (2019).
[18] Geruna H.A. et al., Fruit Fly Optimization (FFO) for Solving Economic Dispatch Problem in Power System, Proceeding Int. Conf. Syst. Eng. Technol., pp. 2–3 (2017).
[19] Guang C., Xiaolong X., Mengzhou Z., Optimal Sitting and Parameter Selection for Fault Current Limiters Considering Optimal Economic Dispatch of Generators, IEEE Conf. Ind. Electron. Appl., pp. 2084–2088 (2018).
[20] El-Ela A.A.A., El-Sehiemy R.A., Rizk-Allah R.M., Fatah D.A., Solving Multiobjective Economical Power Dispatch Problem Using MO-FOA, Proceeding Int. Middle East Power Syst. Conf., no. 1, pp. 19–24 (2018).
[21] Bharathkumar S., ArulVineeth A.D., Ashokkumar K.,Vijayanand Kadirvel, Multi Objective Economic Load Dispatch Using Hybrid Fuzzy, Bacterial Foraging-Nelder Mead Algorithm, Int. Journal of Electr. Eng. Technol., vol. 4, no. 3, pp. 43–52 (2013).
[22] Vahid Sarfi, Hanif Livani, Logan Yliniemi, A New Multi Objective Economic Emission Dispatch in Microgrids, IEEE (2017).
[23] Dash S.K., Mohanty S., Multi-Objective Economic Emission Load Dispatch with Nonlinear Fuel Cost and Noninferior Emission Level Functions for IEEE-118 Bus System, 2nd Int. Conf. Electron. Commun. Syst. ICECS 2015, pp. 1371–1376 (2015).
[24] PanW.T., ANew Fruit Fly Optimization Algorithm: Taking the Financial Distress Model as an Example, Knowledge-Based Syst., vol. 26, pp. 69–74 (2012).
[25] Soliman S.A.-H., Mantawy A.-A.H., Modern Optimization Techniques with Applications in Electric Power Systems, Springer (2010).
[26] Haripuddin Arsyad, Suyuti Ansar, Sri Mawar Said, Yusri Syam Akil, Dynamic Economic Dispatch for 150 kV Sulselbar Power Generation Systems Using Artificial Bee Colony Algorithm, Proc. Int. Conf. Inf. Commun. Technol., pp. 817–822 (2019).
[27] Rasyid R.A., Optimization of 150 kV Sulselbar Power Generation System with Integration SidrapWind Power Plant, Hasanuddin University (2018).
Go to article

Authors and Affiliations

Haripuddin Arsyad
1 2
Ansar Suyuti
1
Sri Mawar Said
1
Yusri Syam Akil
1

  1. Electrical Engineering Department, Hasanuddin University, Gowa, Indonesia
  2. Electrical Engineering Department, Makassar State University, Makassar, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

To study the influence of temperature field and stress field on the cracking of the small thickness steel plate concrete composite shear wall (SPCW) in the early stage of construction. The temperature field and stress field of a 400 mm thickness SPCW was monitored and simulated through experimental research and numerical simulation. Moreover, a series of parameter analyses were carried out by using ANSYS to investigate the distribution of temperature field and stress field of SPCW. Based on the analysis results, some suggestions are put forward for controlling the cracking of SPCW in the early stage of construction. The results show that the temperature stress of 400 mm thickness SPCW in the early stage of construction is small, and there is no crack on the wall surface. For SPCW with thickness less than 800mm, the temperature stress caused by hydration heat in the early stage of construction is small, and the wall will not crack. The parameters such as wall thickness, steel plate thickness, boundary condition and stud space significantly influence the temperature field and stress field distribution of the small thickness SPCW in the early stage of construction, and reasonable maintenance measures can avoid cracking.
Go to article

Authors and Affiliations

Yun Sun
1
ORCID: ORCID
Yaojie Guo
1

  1. Wuhan University, School of Civil Engineering, No.8 of Donghu South Road in Wuhan, Hubei, China
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the authors present a novel construction of an automatic balancing device applicable to balancing shafts working in a heavily polluted environment. The novelty of the presented system lies in the fact that its utilization requires no changes to be made in the already existing shafts. Also, the system is capable of working during the operation of the balanced shaft, so there is no need to stop it. The propulsion system is based on eddy current braking, therefore no wires need to be used in the device. During the development process of the system, three iterations of the device were created. Each iteration is presented, described, and discussed. The advantages and drawbacks of each version are pointed out and explained thoroughly. The correctness of the design was verified by the created devices that were assembled and fixed on shafts to prove the design assumptions.
Go to article

Bibliography

[1] J. Alsalaet. Dynamic Balancing and Shaft Alignment. College of Engineering – University of Basrah, Iraq, 2015.
[2] G.K. Grim, J.W. Haidler, and B.J. Mitchell. The Basics of Balancing. Balance Technology Inc., 2014.
[3] M. MacCamhaoil. Static and Dynamic Balancing of Rigid Rotors. Brüel & Kjær, 2016.
[4] R. Kelm, D. Pavelek, and W. Kelm. Rotor balancing tutorial. In: 45th Turbomachinery Symposium, pages 1–29, Huston, Texas, USA, Sept.12–15, 2016. doi: 10.21423/R1G59R.
[5] W.C. Foiles and P.E. Allaire. Single plane and multi-plane rotor balancing using only amplitude. In: 7th IFToMM International Conference on Rotor Dynamics, Vienna, Austria, Sept. 25–28, 2006.
[6] L. Li, S. Cao, J. Li, R. Nie, and L. Hou. Review of rotor balancing methods. Machines, 9(5):89, 2021. doi: 10.3390/machines9050089.
[7] Bendix Aviation Corp. Automatic Balancing of Rotating Bodies. Patent GB570170A, 1945.
[8] P. Żak. A survey of automatic balancing methods for shafts in motion. International Journal of Mechanical Engineering and Robotics Research, 9(4):559–564. doi: 10.18178/ijmerr.9.4.559-564.
[9] P. Loetzner, C.P. Hemingray, and C. Maas. Rotatable shaft balancing machine and method with automatic flexible shaft balancing equipment. Patent US20030024309A1, 2003.
[10] L. Capo and I. Goodbar. Device for the automatic static and dynamic balancing of rotating machinery. Patent GB679522A, 1952.
[11] G. Darrieus. Apparatus for automatic balancing of rotating bodies. Patent US2659243A, 1953.
[12] G. Darrieus. Device for automatic balancing of rotating machine parts. Patent US2778243A, 1957.
[13] J. Perdiart. System for automatically balancing a centrifuge in operation. Patent US4919646, 1990.
[14] O.A. Makarov, V.I. Nisenman, V.I. Pryadilov, and J.P. Tsimansky. Device for automatic balancing of grinding wheel. Patent US4905419, 1990.
[15] H. Wu, X. Pan, and H. Gao. Pneumatic liquid on-line automatic balancer of rotor. Patent US20140311281A1, 2014.
[16] P.C. Stein. Permanent automatic rotor balancer for shafts operating above critical speed. Patent US4117742A, 1978.
[17] W.R. Backer. Automatic balancing means. Patent GB957577A, 1962.
[18] K. Unno and K. Sugita. Automatic balancing apparatus for a rotating body. US3776065A, 1973.
[19] H. Kuwajima, H. Kita, H. Hashi, M. Miyamoto, Y. Ueno, T. Inagaki, and K. Matsuoka. Development of balanced-type high shock suspension for 0.85-in hard disk drive. IEEE Transactions on Magnetics, 42(2):255–260, 2006. doi: 10.1109/TMAG.2005.861736.
[20] Gao Jinji and Zhang Peng. Simulative study of automatic balancing of grinding wheel using a continuously-dripping liquid-injection balancing head. In: 2006 6th World Congress on Intelligent Control and Automation, pages 8002-8005, Dalian, China, 2006. doi: 10.1109/WCICA.2006.1713530.
[21] E. Lulay. Apparatus for balancing a rotary member. Patent US5676025A, 1997.
[22] M. Krygier, P. Żak, L. Podsędkowski, P. Wróblewski, and M. Podsędkowski. A novel autonomous balancing system for shafts in motion. 2022 20th International Conference on Mechatronics – Mechatronika (ME), pages 1-4, Pilsen, Czech Republic, 2022, doi: 10.1109/ME54704.2022.9983460.
[23] M. Krygier, P. Żak, and L. Podsedkowski. Numerical analysis of torques generated in a propulsion system using eddy currents phenomenon. 5th International Conference on Robotics Systems and Automation Engineering (RSAE) (RSAE 2023), April 20–22, 2023, online.
Go to article

Authors and Affiliations

Michał Krygier
ORCID: ORCID
Paweł Żak
1
ORCID: ORCID
Leszek Podsędkowski
1
ORCID: ORCID
Piotr Wróblewski
1
ORCID: ORCID
Maciej Podsędkowski
2
ORCID: ORCID

  1. Institute of Machine Tools and Production Engineering, Lodz University of Technology, Lodz, Poland
  2. Institute of Turbomachinery, Lodz University of Technology, Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present work deals with agitation of non-Newtonian fluids in a stirred vessel by Scaba impellers. A commercial CFD package (CFX 12.0) was used to solve the 3D hydrodynamics and to characterise at every point flow patterns especially in the region swept by the impeller. A shear thinning fluid with yield stress was modelled. The influence of agitator speed, impeller location and blade size on the fluid flow and power consumption was investigated. The results obtained are compared with available experimental data and a good agreement is observed. It was found that an increase in blade size is beneficial to enlargement of the well stirred region, but that results in an increased power consumption. A short distance between the impeller and the tank walls limits the flow around the agitator and yields higher power consumption. Thus, the precise middle of the tank is the most appropriate position for this kind of impeller.

Go to article

Authors and Affiliations

Houari Ameur
Mohamed Bouzit
Mustapha Helmaoui

This page uses 'cookies'. Learn more